Constraint Tractability Theory And Its Application to the Product Development Process for a Constraint-Based Scheduler

Lisa Purvis
Peter Jeavons

Xerox Corporation
Royal Holloway University of London

800 Phillips Road, 207-01Z
Department of Computer Science

Webster, NY 14580 USA
EGHAM Surrey TW20 0EX, UK

Fax: +01 716 422 4753
Fax: +44 1784 439786

Email: Lisa.Purvis@usa.xerox.com
Email: P.Jeavons@rhbnc.ac.uk

Abstract
Constraint technologies are a natural fit for many real-world applications such as scheduling, diagnosis, configuration, and design. For Xerox, modeling the process of print making as a constraint-based scheduling problem has enabled numerous desirable product attributes. These attributes include reusability of software across different products, reduced time to market for new products, and increased product flexibility due to the modularity enabled by constraint-based techniques. In the business world however, before such a technology can be inserted into a product, its robustness and reliability must be assessed in order to identify and mitigate product risks. Thus, as one of our product milestones, we have conducted a technology readiness assessment of constraint-based technology as applied to reprographic machine (photocopiers, printers, fax machines, etc.) scheduling. In the process of doing so, we discovered that it was necessary to apply recent constraint tractability research results in order to fully complete the technology readiness analysis. This paper describes how these constraint tractability theoretical results were applied to a real-world product to produce conclusions about product complexity and scalability that otherwise would not have been possible. As such, this work also serves as a reminder and testimonial that constraint-based research has application not only as fundamental product technology, but also in processes surrounding product development (e.g. complexity analysis, design, requirements management).

1. INTRODUCTION

Constraint Satisfaction and Constraint Logic Programming techniques have been used successfully in many applications such as scheduling, diagnosis, configuration, and engineering design. At Xerox, the concept of developing compositional declarative models of machines customized for different tasks has been called model-based computing [3]. One application of model-based computing that is currently seeing its implementation in Xerox products is in constraint-based scheduling of modular, networked, reprographic machines (photocopiers, printers, fax machines, etc.). In this application, the constraint-based scheduler is a real-time piece of software that determines the sequence of print making and coordinates the time-sensitive activities of the various hardware modules that make up the machine configuration. Modeling the process of print making as a constraint-based scheduling problem has enabled numerous desirable product attributes, such as reusability of software, faster time to market, and product flexibility for the customer.

One aspect of bringing such a technology to fruition in a real product is proving the reliability and robustness of the technology to the product management team. This process at Xerox is called Technology Readiness Assessment: it is meant to identify risks to the product brought about by the technology, and to propose options for mitigating such risks.

To assess the constraint-based scheduling technology, we conducted an analysis that involved both empirical testing (to gather information about our average-case performance on particular known product configurations) as well as theoretical analyses (to gain insight into our probable worst-case performance on as yet unknown product configurations). The theoretical analysis drew from well established constraint community research on complexity of constraint satisfaction [1]. However, in order to fully complete our technology readiness analysis, we needed to apply more recent theoretical research results on constraint tractability [5,6,7,8]. This constraint tractability theory enabled us to make conclusions about the worst-case complexity of our product technology. Such a thorough analysis would not have been possible without the theoretical constraint tractability results. Therefore, we view this application of constraint theory as a reminder and testimonial that constraint techniques can enhance not only product functionality (i.e. as constraint-based schedulers, constraint-based planners, etc.), but also can aid in processes surrounding product development (e.g. product complexity and scalability analysis, design, requirements management, project planning, etc.). The theoretical results we use here have also recently been used by the UK telecommunications company BT to guide the development of an automated workforce scheduling system [9].

We begin in Section 2 by describing what constraint-based scheduling technology means to Xerox products. We then continue in Section 3 by describing the technology readiness process, its goals, and methodology. We then describe in Section 4 our constraint problem as applied to print making, and continue in Section 5 by detailing the scalability and complexity results we obtained by using constraint tractability theory. We conclude in Section 6 with a summary and an indication of how our analysis could be used as we proceed through the product development cycle.
2. SCHEDULING TECHNOLOGY AT XEROX : PAST AND PRESENT
For Xerox, a scheduler for a reprographic machine is a real-time piece of software that determines the sequence of output sheets that are to be produced on a machine, and coordinates the time-sensitive activities of the various hardware modules. That is, given a document to be produced, the scheduler determines what operations must be executed in what order so that the document is correctly and efficiently produced.
2.1 Schedulers of the Past At Xerox

Traditionally, schedulers at Xerox have been specialized and product-specific pieces of software that attempt to capture each product’s rules and strategies for document scheduling. These rules were generally tailored to the hardware design and to specific product component interactions. For example, consider a printing system module that takes in sheets, places an image on the sheet, and then optionally inverts the sheet and sends it back through a duplex loop to place an image on the 2nd side, as depicted in Figure 1.

[image: image1.wmf]0

200

400

600

800

1000

1200

1400

PPM Supported

3

6

12

Machine Modules

Figure 1. Paper Path Example

The ‘rules’ represent the hardware specific interactions of the paper path. For instance, the duplex loop might hold a maximum of eight 8x11 sheets. This means that a sheet that enters the loop will reemerge eight pitches later. (A ‘pitch’ is the amount of time it takes to make one image).

In traditional printing systems, these types of rules were coded right into the scheduling software, necessitating writing new software for every new product, and changing software for any hardware changes. In addition, these hand-crafted schedulers were optimized for typical jobs expected for each particular product, and thus the scheduler’s performance was generally sub-optimal for non-typical jobs.

2.2 Constraint-Based Scheduling at Xerox

The concept of a constraint-based printing system scheduler originated in order to eliminate many of these drawbacks to traditional schedulers. Constraints are used to model the reprographic system, and a constraint solver schedules the operations required to produce a desired document. The rules are no longer specifically coded into the scheduler, but rather are constraints that describe each system module that are learned when the system is powered up. Xerox has developed a constraint language that allows us to describe the structure and behavior of the various reprographic system components, modules, and machines[2].

To continue our previous example, when the machine powers up, the constraint-based scheduler learns that the time that the sheet exits the duplex loop is 8 pitches after the time that the sheet enters the duplex loop (sheet.exit = sheet.entry + time for 8 pitches). This constraint is then used as sheets are scheduled to ensure that they don’t overlap on the paper path. When the hardware changes (e.g. new hardware technologies are inserted), or for a different product, the scheduling software itself does not have to change. The only change is to the constraints that describe the machine configuration which are written in the constraint language, declared in a separate file. So if the duplex loop changes to allow 9 sheets, the constraint given to the scheduler at power-up is that (sheet.exit = sheet.entry + time for 9 pitches). If there is no duplex loop in the new machine, then there is no description for such a duplex component sent up to the scheduler at power-up, and therefore no sheets requiring two images will be scheduled on this machine.

The benefits from using constraint technology in our products are clear:

· high software reuse across different systems, since the scheduling algorithms remain the same, with only the constraints changing to reflect the physical machine.

· plug-and-play product configurations (i.e. plug in any new component and the system still works) since the scheduling software does not have to be uniquely crafted to each particular product.

· larger number of possible machine configurations at lower cost to the customer due to plug-and-play architecture.

· reduced time to market for new products, since scheduling software does not change.

· Easier tuning of scheduling efficiency by inserting different constraint-solving methods (independently of the particular machine details).

Despite the many inherent product benefits from using constraint-based technology, the benefits must be weighed against the potential product risks from using the technology. At Xerox, the process that identifies such risks is called Technology Readiness Assessment. The motivation and methodology for such an assessment are described in the following section.

3. TECHNOLOGY READINESS PROCESS

Technology readiness must be demonstrated in all program areas incorporating new technology prior to the start of detailed production design. Technology Readiness is a state of technical understanding about a technology. It involves demonstrating that the technology enables a robust production design implementation that has sufficient extensibility to meet the needs of future variants and upgrades, and that the plans to address any open technical issues are adequate. The data that supports the assessment may be gathered through analysis, simulation, and/or testing. Each subsystem of a product that is undergoing Technology Readiness assessment must define its critical parameters, failure modes, and test its latitudes.

In engineering terms, critical parameters are established parameters by which designers can predict or measure how well a system or artifact serves its designated purpose. Software systems are often viewed as having only one critical parameter: the system’s functionality. Simulations and evaluations focus almost entirely on finding flaws in the design. However, for time-critical software applications such as ours, software performance must be tuned in order to avoid slowing down the entire system. Thus, we have defined critical parameters that measure more than just functionality. The critical parameters for us are: memory usage, processing time, and optimality of produced schedules. These parameters help us to understand the performance and scalability of the real-time constraint-based scheduler.

Failure modes are states of the world under which the system is not within the specification. The failure modes are directly related to the critical parameters. For us they are: exceeding the allotted memory capacity, failing to produce schedules that support the targeted pages per minute (PPM) for the machine, and unacceptable suboptimality of produced schedules.

Latitudes define the space within which the system performs acceptably. We took two approaches to defining the latitude space. First, as an empirical analysis, we defined particular product configurations and tested the constraint-based scheduler on those. Second, we did a theoretical analysis of the scheduling algorithms in order to find our expected worst-case performance for any machine configuration. The first approach allows us to measure the constraint-based technology as it performs on specific product configurations, to see what types of configurations and under what circumstances the performance, optimality, and memory requirements cannot be met. The second approach allows us to understand and make conclusions about the worst-case performance of our technology on any potential product configuration. The latter is important due to our constraint language. The language gives infinite flexibility in the machine configurations that the constraint-based scheduler can support (i.e. any configuration definable by the constraint language). Thus, a theoretical analysis that analyzes the expressive power of the constraint language itself is important to our understanding of tractability of the technology.

The two approaches complement one another. The theoretical analysis supports the empirical analysis: even though we know that our tests look OK for memory and processing time, what can we expect in the worst case? Is our problem fundamentally polynomial or exponential? Similarly, the empirical analysis supports the theoretical one: even though we know we are exponential or polynomial for the worst case, what does this mean to us in actual processing time and memory usage. Are we still within our required latitudes? We describe in the following section our scheduler in order to give some context within which to understand the complexity results.

4. CONSTRAINT-BASED REPRESENTATION OF A REPROGRAPHIC MACHINE

Modern digital reprographic machines are complex electro-mechanical systems [12]. Driven by computational control, they scan, digitize, transform and print images, move paper of different sizes and forms, collate, sort, insert, staple, stitch, and bind documents. Larger machines are typically modularized. So for example, we might have a feeder (that feeds paper), a marker (that puts the images on the paper), and a stacker (that stacks sheets and does some finishing such as stapling). Each machine module has ‘capabilities’ that perform its operations. For instance, the feeder might have two ‘feed capabilities’, one that feeds 8.5x11” paper, another that feeds 11x17” paper. The marker might have two ‘mark capabilities’, one that can put marks on the front and back of a sheet, and one that can only put marks on the front of a sheet. Similarly, the stacker might have two ‘stack capabilities’, one that can stack transparencies, and one that can stack regular paper. The transportation and printing of sheets and images is constrained in various ways by the physics of these modules and their capabilities. For example, in order for the machine to operate properly, sheets cannot overlap in the paper path; sheets and images have to be synchronized; and images can be placed on the photo-receptor belt only at certain places (because a seam in the belt must be avoided). Furthermore, the various machine components have timing constraints that must be taken into account. For instance, inversion of a transparency may take longer than inversion of a regular sheet, which may have impact on the produced schedule. The machine components also may impose constraints on the sheets that they can process. For example, a stapler may only work on stationery (not on transparencies), or a feeder may only be able to feed sheets of a particular size or size range.

Xerox has developed a domain-specific modeling language called CDL (Component Description Language) that enables modeling electro-mechanical machines for simulation, productivity analysis, and scheduling [2]. For scheduling, each component of the reprographic machine is described in CDL. Then at machine power-up, this description is sent up to the controller software (which includes the constraint-based scheduler). The constraint-based scheduler uses the constraints defined in CDL to create schedules for jobs that fit the machine constraints and satisfy the requirements of the submitted job. The process of scheduling can be split up into two main parts: finding the operations that will produce the desired sheet, and timing these operations so that they are consistent with the machine timing constraints and the inter-sheet precedence constraints. The second portion of scheduling is where the actual constraint propagation and solving occurs. These results are described in the following section.

5. SCALABILITY AND COMPLEXITY RESULTS

5.1 Empirical Findings

In order to gather data on our critical parameters (processing efficiency, memory usage, and schedule optimality), we defined numerous test machine configurations, defined constraints on the modules, and ran the scheduler, measuring our memory usage and efficiency. The results we will concentrate on here are the efficiency results, as they are most relevant to our later theoretical analysis. Data on efficiency shows that as the complexity of the machine increases (more machine modules implies more constraints and more problem variables), the efficiency of the scheduler decreases linearly. Efficiency is measured in the pages per minute supported by the scheduler. The empirically obtained scalability curve (as shown in Figure 2 below) indicates a linear decrease in efficiency rather than an exponential decrease, within the range of values considered.

[image: image2.wmf]0

200

400

600

800

1000

1200

1400

PPM Supported

3

6

12

Machine Modules

Figure 2. Efficiency of Constraint-Based Scheduling as Machine Complexity Increases

This led us to questions about whether our problem is fundamentally polynomial time, and could we therefore expect this behavior on any configuration. Finding the answer to these questions required a theoretical analysis of our constraint problem.

5.2 Theoretical Findings

We began the theoretical analysis by using existing CSP complexity results on the structures of constraint networks that imply tractability. We know from [1] that if the constraint graph exhibits a tree structure, then the problem is polynomial time solvable. In particular, enforcing arc-consistency in a network having a tree structure ensures global consistency (that is, subsequent search can be accomplished without backtracking).

These results tie back to our scheduling problem as follows. As each sheet’s timing values are instantiated, our constraint-based scheduler propagates these values through its constraint network via the arc-consistency algorithm. Thus, we have the typical propagate and search process in our scheduler, where propagation is the arc-consistency algorithm. To better understand how this works in our application, let’s examine what the variables and constraints are in our particular constraint satisfaction problem.

5.2.1 Problem Variables

To understand the constraint problem variables in our domain, let’s look at the hierarchical concepts that lead us to the actual variables.

At the highest level, we have print jobs containing sheets. At the next conceptual level, each sheet has a sequence of operations associated with it that will produce that sheet. So, for instance, we might have a feed, a mark, and a stack operation for each sheet:

Sheet1.Feed

Sheet2.Feed

Sheet3.Feed

Sheet1.Mark

Sheet2.Mark

Sheet3.Mark

Sheet1.Stack

Sheet2.Stack

Sheet3.Stack

Each of these operations has one or more time intervals associated with it. These intervals represent the time spent performing the particular operation. Each type of operation can have a different number of intervals associated with it. For instance, feed operations typically only have exiting intervals, since sheets only exit from the operation - no sheets are coming into the operation. Mark operations typically have entering, transfer, and exiting intervals, which represent the timing requirements as the sheet enters the operation, as the image is transferred during the operation, and as the sheet exits the operation. Stack operations typically have only entering intervals, since the sheets come to a final resting place in the stack, and do not exit. Each operation also has a Reference Time, which is the time that is proposed at which to perform the particular operation. So what we have for each sheet is the following:

Sheet.Feed.Exiting

Sheet.Mark.Entering

Sheet.Stack.Entering

Sheet.Feed.ReferenceTime

Sheet.Mark.Transfering

Sheet.Stack.ReferenceTime

Sheet.Mark.Exiting

Sheet.Mark.ReferenceTime

Each interval consists of three problem variables: start, end, and duration. So what we really have per sheet is a set of problem variables:

Sheet.Feed.Exiting.Start

Sheet.Mark.Entering.Start

Sheet.Stack.Entering.Start

Sheet.Feed.Exiting.End

Sheet.Mark.Entering.End

Sheet.Stack.Entering.End

Sheet.Feed.Exiting.Duration
Sheet.Mark.Entering.Duration

Sheet.Stack.Entering.Duration

Sheet.Feed.ReferenceTime
Sheet.Mark.Transfer.Start

Sheet.Stack.ReferenceTime

Sheet.Mark.Transfer.End

Sheet.Mark.Transfer.Duration

Sheet.Mark.Exiting.Start

Sheet.Mark.Exiting.End

Sheet.Mark.Exiting.Duration

Sheet.Mark.ReferenceTime

We use a discretised model of time, with a predefined maximum possible time value, so these variables all have finite integer domains.

5.2.2 Problem Constraints

The typical constraints that we have per operation are:

For feed operations:

exiting.start = feedReferenceTime
(the feedReferenceTime is the time at which it is proposed that the feeder feeds a particular sheet).

For mark operations:

Entering.start + 2235 = transfer.start

MarkReferenceTime = transfer.start

Transfer.start + 4292 = exiting.start

Entering.duration = 600

Exiting.duration = 600

Transfer.duration = 600

For stack operations:

Entering.start = StackReferenceTime
We have equality constraints between connected operations:

sheet1.feed.exiting.end = sheet1.mark.entering.end

sheet1.mark.exiting.end = sheet1.stack.entering.end

There is also an implicit constraint on the variables in an interval:

Start + duration = end

As well as a constraint between the end times of each sheet in order to preserve the proper output order:

sheet1.stack.entering.end < sheet2.stack.entering.end

sheet2.stack.entering.end < sheet3.stack.entering.end

5.2.3 Problem Structure

So if we draw each of Sheet1’s variables as a node in a constraint graph, and connect the nodes if there are constraints between the variables, we get the following:

Figure 3. Constraint Graph for One Sheet

Then if we also add Sheet2’s variables into the graph, we get the graph shown in Figure 4.

Thus, our current models’ constraint graphs form a tree structure, which explains why our empirical results show a linear decrease in efficiency as the problem grows - we have a fundamentally polynomial problem. (We must qualify this by saying that we have a polynomial problem when looking for ‘a’ solution - not necessarily an optimal solution). What this means to us is that as our machine configurations grow (problem size increases), the time it takes to schedule will not grow exponentially, enabling scalability up to larger machine configurations than would be possible if the algorithm was exponential.

Figure 4. Constraint Graph for Two Sheets

The intuitive explanation for why a tree structure enables polynomial time solving is that for problems in which the effect of any assignment of a value to a variable can be propagated immediately to the domains of related variables, propagate-and-search is efficient. It is efficient because all invalid values are immediately removed from the search space, as shown below in Figure 5. What is left in the variable domains are only values that participate in a solution. This in turn means that there is no search necessary as other variables are assigned values.

Figure 5. Propagation Can Prune All Branches

By analyzing the structure of our current models, we were able to conclude that our current models are solvable in polynomial time in the worst case. However, the question still remained as to the problem complexity of any model that can be represented via the Component Description Language (CDL). There are relevant new results from the constraint satisfaction research community that allow us to make general claims about complexity as it relates to a language of constraints.

5.2.4 Constraint Tractability Theory

In [7], results show that there are certain properties of constraint relations which are sufficient to ensure tractability, regardless of the associated problem structure. In particular, any class of constraints that does not give rise to NP-complete problems must satisfy an algebraic closure condition [5]. What this means is that in order for a constraint language to be tractable, all constraints expressible in the language have to share a common closure operation, as defined in [5]. If any constraint is added that is not closed under the same operation, the class of problems definable with those constraints changes into an NP-complete problem class.

The authors in [6] identify four classes of constraint sets that give rise to tractable problems. Each of these classes is characterized by a simple algebraic closure condition.

5.2.4.1 Tractability Theory As it Applies to Currently Represented Models

The constraints that we have the possibility to define in our constraint language are of the following forms:

e == f

e <= f

e < f

e and f are sums and differences of terms, each term being a product of
e >= f

integer literals and variables. Unary negation of terms is also allowed.

e > f

v in s

v not in s

v is a variable and s is a set of integer constants

aligned (v,p,o)

(translates to: (v.start - o) mod p = 0. This means that v is aligned to p by offset o).

inPeriod(v,w,p,o)

(translates to (v.start - o) mod p + w <= p)

(the interval with start v and duration w is completely within a block of time of length p starting at some multiple of p plus offset o)

allocation(t,p,r)
Resource r contains an allocation during time interval t for processing time p.

if t then c else d

If test t is true, then constraint c is declared, otherwise, constraint d is declared.

Analysis of the constraints used in our empirically tested models has confirmed the result from our analysis of the problem structure: our current models fall into the class of tractable problems. This is so because all of our current constraints all fall into the class of constraints that are ‘max-closed’. From Jeavons [8] we get the definition of max-closed:

Let C be a constraint on an ordered domain and let t = (x1, x2, …, xr) and t’ = (x’1, x’2, …, x’r) be elements of C (that is, tuples of values which are allowed by C). The maximum of t and t’, denoted t |_| t’ is defined as

T |_| t’ = (max(x1, x’1), max(x2, x’2), …, max(xr, x’r))

A constraint C is said to be max-closed if, for all t,t’ (C, t |_| t’ (C.

As an example, we show one from Jeavons[10]:

The constraint C = {<4,5>, <4,6>, <5,4>, <5,5>, <5,6>, <6,4>, <6,5>, <6,6>} is max-closed, because the MAX operation applied to any two tuples in the constraint results in another tuple in the constraint.

e.g. max(<4,5>, <6,4>) = <max(4,6), max(5,4)> = <6,5>(C2.

The constraints used in our current models are of the following forms:

X > Y

X = Y + c

aligned(v,p,o)

inperiod(v,w,p,o)

allocation(t,p,r)

The first two types of constraints (C1: X > Y, C2: X = Y + c) are max-closed. To explain this, consider a constraint C1 of the form sheet2.exiting.end > sheet1.exiting.end. Also consider a finite domain for each variable of {1,2,3}. The tuples represented by constraint C1 are (<2,1>, <3,1>, <3,2>). The MAX operation applied to any two tuples in the constraint results in another tuple in the constraint:

max(<2,1>, <3,1>) = <max(2,3), max(1,1)> = <3,1> (C1

max(<2,1>, <3,2>) = <max(2,3), max(1,2)> = <3,2> (C1

max(<3,1>, <3,2>) = <max(3,3), max(1,2)> = <3,2> (C1

max(<3,1>, <2,1>) = <max(3,2), max(1,1)> = <3,1> (C1

max(<3,2>, <2,1>) = <max(3,2), max(2,1)> = <3,2> (C1

max(<3,2>, <3,1>) = <max(3,3), max(2,1)> = <3,2> (C1

It is straightforward to show that this property holds for this type of constraint over any finite domain.

The same process shows how a constraint of form C2 is max-closed. Consider the constraint sheet1.transfering.start = sheet1.entering.start + entryToTransfer (where entryToTransfer is a constant: 1300). Consider a value domain for each variable of {1,2,3}. The tuples represented by constraint C2 are (<1301,1>, <1302,2>, <1303,3>). The MAX operation applied to any two tuples in the constrain results in another tuple in the constraint:

max(<1301,1>, <1302,2>) = <max(1301,1302), max(1,2)> = <1302,2> (C2

max(<1301,1>, <1303,3>) = <max(1301,1303), max(1,3)> = <1303,3> (C2

max(<1302,2>, <1303,3>) = <max(1302,1303), max(2,3)> = <1303,3> (C2

max(<1302,2>, <1301,1>) = <max(1302,1301), max(2,1)> = <1302,2> (C2

max(<1303,3>, <1301,1>) = <max(1303,1301), max(3,1)> = <1303,3> (C2

max(<1303,3>, <1302,2>) = <max(1303,1302), max(3,2)> = <1303,3> (C2

Once again, this example can be generalised to show that any constraint of type C2 has this property, whatever the value of the constants or the size of the domain.

The aligned, inperiod, and ‘in’/’not in’ constraints are unary constraints on the variables. From Jeavons[8], we know that all unary constraints are max-closed.

The allocation constraint is used as a domain pruning operational constraint. If we make an allocation to resource R1 at time 300 for a duration of 400, then all other variables requiring resource R1 are checked, and their domains are pruned. The constraint represents the fact that the minimum value in a variable’s domain that uses resource R1 must be the earliest time in the resource for which an allocation is possible (for the minimum required duration). So, for example, if we have the following variables (Var1’s values have been determined already, Var2’s haven’t):

 Var1.interval.start = 300

Var2.interval.start[100,50000]

 Var1.interval.duration = 400

Var2.interval.duration [300,500]

 Var1.interval.end = 700

Var2.interval.end [400,50500]

 Allocation(Var1.interval.start,400,R1)

Allocation(Var2.interval.start,Var2.interval.duration, R1)

We know from the allocation constraints that Var1 needs resource R1 for a duration of 400. We also know that Var2 needs resource R1 for its entire duration. Once Var1’s values are determined, Var2’s value domains will be updated since Var2 uses the same resource as Var1. Var2’s minimum start value will be updated so that it is the earliest time in the resource for which an allocation of Var2’s minimum duration (300) can be made. Since Var2.interval.start begins potentially at 100, for a minimum duration of 300, this results in Var2.interval.end at 400, which interferes with Var1’s allocation of resource R1. Thus, Var2’s minimum start time must be adjusted so that it will allow an allocation of resource R1 that doesn’t interfere with Var1’s allocation. This translates to the constraint Var2.interval.start > 700, where 700 is the earliest time in resource R1 for which an allocation of duration 300 can be made. Thus, this constraint falls into the same class as the others.

With this tractability theory, we can verify that our current models fall within a tractable class of constraint problems. The next section examines whether the full language, including constraints of any form supported by the language, is tractable.

5.2.5 Tractability Theory as it Applies to Any Model Expressible in the Language

The constraints that can be represented in the CDL language can be more complex than those in our current models. We can define constraints containing arbitrary length sums and differences of integer literals and variables, rather than those in our current models that contain only one variable on each side of the constraint equation along with a constant. We can therefore find constraints representable in CDL that are not in any of the known tractable classes.

To see that in fact there are constraints representable in CDL that are not max-closed, consider the following constraint: aX + bY < cM - dN (X,Y,M,N are variables, and a,b,c,d are integer constants). This constraint is not max-closed. To see this, take all constants as 1, then the following list of values for X,Y,M,N satisfies the constraint: (1,10,20,2) (since 1+10 < 20-2), and so does the list (10,1,18,3), (10+1 < 18-3). But if we take the maximum in each position, we get (10,10,20,3), which does not satisfy the constraint, since 10+10 is not less than 20 - 3. Similar arguments show that this constraint does not fall into any of the known tractable classes.

This by itself, however, does not allow us to make a hard claim that the language in general is NP-complete, since it is not yet known if all tractable classes have been found. Thus, even though our language allows constraints that aren’t in the existing tractable problem classes, there may be an undiscovered tractable class that our constraints fall into. In the absence of making this sort of claim, it is more common to show that a language can express some known NP-complete problem, thereby showing that the language is in fact NP-complete. The problem “Integer Programming” (Garey & Johnson [4] problem MP1) can be expressed in our language, and therefore our language is in general NP-complete. This means that there are models that we can express within CDL that are likely to require exponential solving complexity.

There are certain types of constraints that have already been shown to lie in the same tractable problem class as the constraints in our current models [5]. Models utilizing any of these types of constraints will therefore also lie within the tractable problem class. The constraints that can be added to our current models without losing the tractable property are constraints of the following forms:

Linear binary constraints (e.g. aX = bY + c, aX <= bY + c, aX >= bY + c)

a1X1 + a2X2 + … + arXr >= bY + c

a1X1X2…Xr >= bY + c

(a1X1 >= b1) OR (a2X2 >= b2) OR (aY <= b)

any unary constraint

(where upper-case letters represent variables and lower-case letters represent positive constants).

Thus, although the full flexibility of our language allows us to define intractable problems, we also have examples of possible additional types of constraints that will not affect our tractability. This information is vital as we apply constraint-based scheduling technology to future products and product variations. It allows us to predict how performance will scale as we change our products.

6. SUMMARY AND CONCLUSION

At Xerox, we use constraint-based scheduling to provide a flexible, extensible, and efficient method by which to model and control the printing of sheets on reprographic machines. Before constraint-based scheduling was allowed into any of our products, the technology had to undergo a ‘readiness’ assessment, to measure the performance and scalability we could expect from it on our various product configurations. To that end, we used recent constraint theory to help us understand the theoretical nature of our constraints, and to prove that our current models result in polynomial-time solvable (tractable) problems. We could furthermore deduce that our full constraint language allows us to define models that are not fundamentally tractable, and that we must therefore be careful to analyze future product configurations to determine whether new constraints move us into the intractable problem space, thereby introducing scalability and efficiency issues.

These results formed the basis for our technology readiness assessment, which we passed with extremely favorable reviews, due to the deep understanding of our problem that these analyses provided. For the future, we will continue to monitor our empirical results, as well as analyze any new models to determine their overall tractability. We anticipate that when we encounter models that are fundamentally intractable, that current constraint community research on “phase transitions” [11] may help us. That is, even when we discover intractable models, perhaps the constraint community will have identified some problem characteristics by which we can determine whether or not we are truly in the ‘hard’ region.

The application of constraint theory to our analysis allowed us to make strong claims about the tractability of our current models, and to urge caution as we develop new models. These results were both crucial to passing our technology readiness assessment, and would not have been obtained without applying the theoretical results developed in the constraint community. This experience serves as a testimonial and reminder that constraint research can be applied in numerous ways: both as actual application technology, and also as a means by which to support processes surrounding product applications, such as analysis.

7. REFERENCES

[1] Freuder, E.C. “A Sufficient Condition for Backtrack-Free Search”, Journal of the ACM, 29(1), Pgs. 24-32, 1982.

[2] M. Fromherz, V. Gupta, V. Saraswat, “cc - A Generic Framework for Domain Specific Languages”, In POPL Workshop on Domain Specific Languages, Paris, 1997.

[3] M. Fromherz, V. Saraswat, “Model-Based Computing: Constructing Constraint-Based Software for Electro-Mechanical Systems”, in Proceedings of the Practical Application of Constraint Technology Conference, Paris, France, 1995.

[4] Garey, M. and Johnson, D. “Computers and Intractability: A Guide to the Theory of NP-Completeness”, WH Freeman, 1979.

[5] Jeavons, P., Cohen, D. “Closure Properties of Constraints”, Journal of the ACM, Volume 44, Pgs. 527-548, 1997.

[6] Jeavons, P., Cohen, D., Gyssens, M. “A Unifying Framework for Tractable Constraints”, Lecture Notes in Computer Science, Volume 976, Pgs. 276-291, 1995.

[7] Jeavons, P., Cohen, D., Gyssens, M. “A Test For Tractability”, Lecture Notes in Computer Science 1118, Pgs. 267-281, 1996.

[8] Jeavons, P., Cooper, M. “Tractable Constraints on Ordered Domains”, Artificial Intelligence, Volume 79(2), Pgs. 327-339, 1995.

[9] Lesaint, D., Azarmi, N., Laithwaite, R., Walker, P. “Engineering Dynamic Scheduler for Work Manager”, BT Technology Journal, Vol. 16(3), pp. 16-29, July 1998.

[10] Pearson, J. and Jeavons, P. “A Survey of Tractable Constraint Satisfaction Problems”, Technical Report CSD-TR-97-15, Royal Holloway University, UK, July 1997 (available from http://www.cs.rhbnc.ac.uk/research/compint/areas/constraints).

[11] Smith, B.M., Dyer, M.E., “Locating the Phase Transition in Binary Constraint Satisfaction Problems”, Artificial Intelligence 81, pp. 273-295, 1996.

[12] F. Varejao, M. Fromherz, A. Garcia, C. de Souza, “An Integrated Framework for the Specification and Design of Reprographic Machines”, In Proceedings of the 13th Conference on Applications of AI in Engineering, July 1998.

Duplex loop

Sheet out

Sheet in

invert

print

s1ReferenceTime

f1exiting.end

m1transfer.start

m1exiting.end

m1transfer.end

s1entering.start

s1entering.end

f1ReferenceTime

m1exiting.start

m1entering.end

m1entering.start

f1exiting.start

m1ReferenceTime

� EMBED MSGraph.Chart.8 \s ���

s2ReferenceTime

f2ReferenceTime

s2entering.end

s2entering.start

f2exiting.end

m2transfer.end

m2transfer.start

m2exiting.end

m2exiting.start

m2entering.end

m2entering.start

f2exiting.start

m2ReferenceTime

s1ReferenceTime

f1ReferenceTime

s1entering.end

s1entering.start

f1exiting.end

m1transfer.end

m1transfer.start

m1exiting.end

m1exiting.start

m1entering.end

m1entering.start

f1exiting.start

m1ReferenceTime

Vj = 3

Vj = 1

Vi = 1

_972302499

