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1. INTRODUCTION

Graph reachability problems are fundamental to complexity theory. They cap-
ture many important complexity classes. The general st-connectivity problem
for directed graphs is complete for NL and hence captures the power of
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nondeterminism in the context of logarithmic space. Various restricted ver-
sions of this problem characterize other low-level complexity classes such
as L, AC0, and NC1 [Etessami 1997; Reingold 2005; Barrington et al. 1998;
Barrington 1989].

A natural and important restriction of the st-connectivity problem is when
the graphs involved are planar, which we denote by PLANARREACH in this ar-
ticle. The complexity of this problem is not yet settled satisfactorily. The best
known upper bound in terms of space complexity is NL. Though it is hard for L
[Etessami 1997], it is not known whether it is complete for NL. Recently there
has been progress in understanding the complexity of PLANARREACH. Allender
et al. [2005] have shown that PLANARREACH log-space reduces to the reach-
ability problem for a strict subclass of planar graphs called grid graphs. We
denote the reachability problem for grid graphs as GGR. From this result and
the fact that GGR reduces to its complement [Barrington et al. 1998], it follows
that PLANARREACH reduces to its complement problem of non-reachability in
planar graphs. Allender et al. [2005] also gave a direct log-space reduction
from PLANARREACH to its complement.

In this article, we make further progress in understanding the space com-
plexity of PLANARREACH. Building on earlier work, we give a simple argument
to show that PLANARREACH can be decided in unambiguous log-space.

THEOREM 1.1 (MAIN THEOREM). PLANARREACH ∈ UL ∩ coUL.

UL denotes the unambiguous subclass of NL. A decision problem L is in UL
if and only if there exists a nondeterministic log-space machine M deciding
L such that, for every instance x, M has at most one accepting computation
on input x. Thus, planar reachability can be decided by a nondeterministic
machine in log-space with at most one accepting computation.

Unambiguity in nondeterminism is a well-studied notion. In the polynomial-
time setting, Valiant [1976] introduced the class UP, the unambiguous ver-
sion of NP, which proved to be a very useful restriction to study, mainly be-
cause of its connection to certain kind of one-way functions [Grollman and
Selman 1988]. In the logarithmic space setting, the class UL was first defined
and studied by Buntrock et al. [1991] and Àlvarez and Jenner [1993]. Since
then, UL and related low-space unambiguous classes have been of interest
to researchers [Buntrock et al. 1991; Àlvarez and Jenner 1993; Lange 1997;
Allender and Lange 1998; Reinhardt and Allender 2000; Allender et al. 2005].

The class UL is particularly interesting because there is increasing evi-
dence that, in fact, the whole of nondeterministic logarithmic space might be
contained in UL. Reinhardt and Allender [2000] show that the nonuniform
version of UL contains NL; that is NL ⊆ UL/poly. Can this collapse be made
uniform? That is, is it true that NL = UL? To understand this question fur-
ther it is worthwhile to sketch the structure of their proof. A positively and
polynomially weighted graph is said to be min-unique if the minimum weight
path (if it exists) between any two nodes is unique (the weight of a path is
the sum of the weights of its edges). Reinhardt and Allender [2000] show,
using a clever adaptation of the inductive counting technique of Immerman
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[1988] and Szelepcsényi [1988], that the reachability question in min-unique
graphs can be decided in UL. They further argue that the isolation lemma
due to Mulmuley et al. [1987] can be used to nonuniformly (or randomly) as-
sign weights to make the given graph min-unique. This gives the nonuniform
collapse result. In a later paper, Allender et al. [1999] show that, under the
hardness assumption that deterministic linear space has functions that can
not be computed by circuits of size 2ǫn, the constructions given by Reinhardt
and Allender [2000] can be derandomized to show that NL = UL. Thus, it is
very likely that NL = UL, but we do not know how to prove this statement
unconditionally.

From the above discussion, a very promising approach for showing NL = UL
is the following. Consider a class of graphs for which the reachability problem
is complete for NL. Prescribe a deterministic log-space computable polynomial
weight function that makes graphs in this class min-unique. In this paper we
prescribe a simple weight function for the class of grid graphs and prove that
under this weight function, grid graphs are min-unique. Since PLANARREACH

reduces to reachability in grid graphs. This leads to our upper bound for
PLANARREACH. Although we are unable to come up with a weight function
for more general class of graphs that works for solving NL = UL problem, our
result indicates that such a task may not be all that difficult.

Grid graphs are graphs with vertices located on the planar grid and edges
connecting a vertex only with its immediate vertical/horizontal neighbors.
Reachability in grid graphs is interesting from a complexity-theoretic point
of view. Barrington et al. [1998] showed that st-connectivity on such graphs
with constant width captures the complexity of the AC0 hierarchy. Long before
Reingold [2005] showed that the undirected st-connectivity problem is in L,
Blum and Kozen [1978] gave a deterministic log-space algorithm for undi-
rected grid graphs. Recently, the complexity of various restrictions of grid
graph reachability have been studied [Allender et al. 2005; 2006]. Specifically,
Allender et al. [2005] show that the layered grid graph reachability problem is
in UL by prescribing a weight function that makes such graphs min-unique. A
layered grid graph is a grid graph with edges allowed only in three cardinal
directions, thus such graphs are acyclic. Our weight function for general grid
graphs is a nontrivial extension of the weight function due to Allender et al.
[2005].

We also explore the possibility of extending our techniques to solve the
NL = UL problem. We give a simple reduction to show that reachability in
directed graphs of thickness two is complete for NL. A thickness-two graph is
one whose edge set can be partitioned into two planar graphs (by definition
planar graphs are thickness-one graphs). Hence, extending our technique to
the class of thickness-two graphs will show NL = UL. We show this result by
first observing that the reachability problem for 3 dimensional monotone grid
graphs is complete for NL. We also give UL upper bounds for reachability in
certain classes of nonplanar graphs.

The rest of the article is organized as follows: In the next section we present
definitions and techniques needed for the results of this article. We prove the
main result in Section 3. In Section 4, we give a few extensions of the main
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result to certain classes of nonplanar graphs and discuss extending our tech-
niques to general graphs.

2. PRELIMINARIES

We assume familiarity with the basics of complexity theory and in particular
the log-space bounded complexity class NL. A language L is in UL if and only
if there exists a nondeterministic log-space machine M accepting L such that,
for every instance x, M has at most one accepting computation on input x. It
is well known that checking for st-connectivity for general directed graphs is
NL-complete. We consider the st-connectivity problem for planar graphs and
grid graphs.

A n × n grid graph is a directed graph whose vertices are [n] × [n] =
{1, . . . , n}×{1, . . . , n} so that if ((i1, j1), (i2, j2)) is an edge then |i1−i2|+| j1− j2| = 1.
Grid graphs are a very natural subclass of planar graphs with vertices identi-
fied with the n× n grid on the x-y plane oriented at (1, 1) with directed edges
connecting only the immediate vertical and horizontal neighbors within the
grid borders. It is convenient to view the edges according to the cardinal direc-
tions. For a vertex (i, j), the edge (i, j)→ (i, j+1) is a north edge, (i, j)→ (i, j−1)
is a south edge, (i, j) → (i + 1, j) is an east edge, and (i, j) → (i− 1, j) is a west
edge.

The grid graph reachability problem, denoted GGR, is as follows. Given a
grid graph G and vertices s and t, determine if there exists a directed path from
s to t in G. The directed planar reachability problem denoted as PLANARREACH

is the following: Given a planar graph G and vertices s and t, determine if
there exists a directed path from s to t in G.

We will not be concerned with details about the representation of planar
graphs. We note that the work of Allender and Mahajan [2004], and subse-
quently Reingold [2005], implies a deterministic logarithmic space algorithm
that decides whether or not a given graph is planar and, if it is, outputs a pla-
nar embedding. We will use the following result which requires such a planar
embedding.

THEOREM 2.1 [ALLENDER ET AL. 2005]. The PLANARREACH problem log-

space many-one reduces to GGR.

Note that because of the above reduction and the fact that UL is closed under
log-space many-one reductions, it is enough to show that GGR ∈ UL ∩ coUL to
prove our main theorem.

2.1 Reachability in min-unique Graphs Is in UL

Reinhardt and Allender [2000] give a general technique for showing member-
ship in UL which we will make use of.

Definition 2.2. A min-unique graph is a directed graph with positive
weights associated with each edge where for every pair of vertices u, v, if there
is a path from u to v, then there is a unique minimum weight path from u to v.
Here, the weight of a path is the sum of the weights on its edges.
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Reinhardt and Allender [2000] actually define min-uniqueness for un-
weighted graphs, but these two definitions are essentially same in our context
as one can replace an edge e with a positive, polynomially-bound integer weight
w(e), with a path of length w(e). For completeness, we present a (somewhat
shorter) version of their proof which uses a clever extension of the inductive
counting techniques of Immerman [1988] and Szelepcsényi [1988]. The orig-
inal proof is for the non-uniform setting and hence requires additional verifi-
cation to ensure that the advice is “good.” This step is not necessary for our
application. Other than this, we closely follow their presentation.

THEOREM 2.3 [REINHARDT AND ALLENDER 2000]. Let G be a class of

graphs and let H = (V, E) ∈ G. If there is a polynomially bounded log-space

computable function f that on input H outputs a weighted graph f (H) so that

(1) f (H) is min-unique and

(2) H has an st-path if and only if f (H) has an st-path

then the st-connectivity problem for G is in UL ∩ coUL.

PROOF. It suffices give a UL ∩ coUL algorithm for the reduced graph. For
H ∈ G, let G = f (H) be a directed graph with a min-unique weight function w

on its edges. We first construct an unweighted graph G′ from G by replacing
every edge e in G with a path of length w(e). It is easy to see that st-connectivity
is preserved. That is, there is an st-path in G if and only if there is one in G′.
Since G is min-unique, it is straightforward to argue that the shortest path
between any two vertices in G′ is unique.

Let ck and 6k denote the number of vertices which are at a distance at most
k from s and the sum of the lengths of the shortest path to each of them, re-
spectively. Let d(v) denote the length of the shortest path from s to v. If no
such path exists, then let d(v) = |V| + 1. We have,

6k =
∑

v∈V
d(v)≤k

d(v) .

We first give an unambiguous routine (Algorithm 1) to evaluate the predicate
“d(v) ≤ k” when given the values of ck and 6k. The algorithm will output the
correct value of the predicate (true/false) on a unique path and outputs “?” on
the rest of the paths.

We will argue that Algorithm 1 is unambiguous.

(1) If Algorithm 1 incorrectly guesses that d(x) > k for some vertex x then
count < ck and so it returns “?” in line 18. Thus, consider the computation
paths that correctly guess the set {x | d(x) ≤ k}.

(2) If at any point the algorithm incorrectly guesses the length l of the shortest
path to x, then one of the following two cases occur.

(a) If d(x) > l then no path s to x would be found and the algorithm returns
“?” in line 11.
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Algorithm 1. Determining whether d(v) ≤ k or not.

Input: (G, v, k, ck, 6k)
Output: true if d(v) ≤ k else false

1 Initialize count← 0; sum← 0; path.to.v← false

2 foreach x ∈ V do

3 Nondeterministically guess if d(x) ≤ k

4 If guess is Yes then

5 Guess a path of length l ≤ k from s to x

6 if guess is correct then

7 Set count← count + 1
8 Set sum← sum + l

9 if x = vthen set path.to.v← true

10 else

11 return “?”
12 end

13 end

14 end

15 if count = ck and sum = 6k then

16 return path.to.v

17 else

18 return “?”
19 end

(b) If d(x) < l then the variable sum would be incremented by a value
greater than d(x) and thus sum would be greater than 6k causing the
algorithm to return “?” in line 18.

Thus, there will remain only one computation path where all the guesses are
correct and the algorithm will output the correct value of the predicate on this
unique path. Finally, we note that Algorithm 1 is easily seen to be log-space
computable.

Next, we describe an unambiguous procedure (Algorithm 2) that computes
ck and 6k given ck−1 and 6k−1. Algorithm 2 uses Algorithm 1 as a subroutine.
Other than calls to Algorithm 1, this routine is deterministic, and so it follows
that Algorithm 2 is also unambiguous.

We will argue that Algorithm 2 computes ck and 6k. The subgraph con-
sisting only of s (d(x) ≤ 0) is trivially min-unique and c0 = 1 and 60 = 0.
Inductively, it is easy to see that

ck = ck−1 +
∣

∣{v | d(v) = k}
∣

∣

6k = 6k−1 + k
∣

∣{v | d(v) = k}
∣

∣

In addition, d(v) = k if and only if there exists (x, v) ∈ E such that d(x) ≤
k − 1 and ¬(d(v) ≤ k− 1). Both of these predicates can be computed using
Algorithm 1. Combining these facts, we see that Algorithm 2.1 computes ck

and 6k given ck−1 and 6k−1.
As a final step, we give the main routine that invokes Algorithm 2.1 to

check for st-connectivity in a min-unique graph. Since there is an st-path if
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Algorithm 2. Computing ck and 6k.

Input: (G, k, ck−1, 6k−1)
Output: ck, 6k

1 Initialize ck ← ck−1 and 6k ← 6k−1

2 foreach x ∈ V do

3 if ¬(d(v) ≤ k− 1) then

4 foreach x such that (x, v) ∈ E do

5 if d(x) ≤ k− 1 then

6 Set ck ← ck + 1
7 Set Set 6k ← 6k + k

8 end

9 end

10 end

11 end

12 return ck and 6k

Algorithm 3. Determining if there exists a path from s to t in G.

Input: A directed graph G

Output: true if there is a path from s to t, false

otherwise
1 Initialize c0 ← 1, 60 ← 0, k← 0
2 for k = 1, . . . , n do

3 Compute ck and 6k by invoking Algorithm 2 on
(G, k, ck−1, 6k−1)

4 end

5 Invoke Algorithm 1 on (G, t, n, cn, 6n) and return its value

and only if d(t) ≤ n, it suffices to compute cn and 6n and invoke Algorithm 1 on
(G, t, n, cn,6n). This procedure is presented as Algorithm 3. To ensure that the
algorithm runs in log-space, we do not store all intermediate values for ck, 6k.
Instead, we only keep the most recently computed values and reuse space. As
with Algorithm 2.1, this procedure is deterministic and so the entire routine
is unambiguous. Thus, reachability in min-unique graphs can be decided in
UL ∩ coUL.

3. PLANAR REACHABILITY IS IN UL

We now prove our Main Theorem. In light of Theorems 2.1 and 2.3, it suffices
to show a log-space computable positive weight function which produces a min-
unique graph for grid graphs.

PROOF OF THEOREM 1.1. Let G be a grid graph with the rows and columns
of G indexed from 1 to n. We define a weight function w on the edges of G as
follows:

w(e) =







n4 if e is an east or west edge
i + n4 if e is a north edge in column i

−i + n4 if e is a south edge in column i

ACM Transactions on Computation Theory, Vol. 1, No. 1, Article 4, Pub. date: February 2009.
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Clearly, w is log-space computable. Moreover, the weight on any edge is
positive since i ≤ n. Note that according to this weight function, the minimum
weight path must be simple. Hence, we need only consider simple paths. Let
P be a simple path in G and denote its weight by w(P). The weight of any
path is of the form w(P) = a + bn4. For a given path P, let a(P) denote the
“a” component and let b (P) denote the “b” component of its weight. Here,
a(P) serves to weight a path’s north/south edges while b (P) serves to count the
total length of the path. Since the largest weight in absolute value of either
component for any edge is n and there are no more than n2 edges in any st-path,
it follows that |a(P)|, b (P) < n3 for any path P.

Let P1 and P2 be two paths in G having the same weight. Then, we have
that a(P1) = a(P2) and b (P1) = b (P2). To see this, let w(P1) = a1 + b1n4 and
w(P2) = a2 + b2n4. Then, we have that

w(P1) = w(P2) ⇒
(a1 − a2) + (b1 − b2)n4 = 0 ⇒

a1 = a2 and b1 = b2

The final implication follows since the |ai|’s and b i’s, and hence their respective
differences, are bounded by n4. Now, we will argue that, with respect to this
weight function for any u and v, the minimum weight path from u to v, if it
exists, is unique.

First, we prove a very nice property of this weight function: namely, that
the “a” component of the weight of any nontrivial simple cycle in G is non-zero.
In fact, we prove the following stronger property of this weight function. For a
simple cycle C, let A(C) denote the number of unit squares it encloses.

LEMMA 3.1. Let C be a simple directed cycle in G. Then a(C) = +A(C) if C

is a counter-clockwise cycle and a(C) = −A(C) if C is a clockwise cycle.

PROOF. It suffices to prove the lemma for a counter-clockwise simple cycle.
This is because, for a clockwise cycle C, a(C) = −a(−C) where−C is the counter-
clockwise cycle obtained by reversing the edges in C.

Let C be a counter-clockwise cycle in G. Consider the restriction of the cycle
to the set of edges between two consecutive rows, say j and j + 1. We can view
this set of edges as an ordered set, where an edge e appears before an edge e′

in the ordering if e is to the west of e′ in the graph. Denote this ordered set
by Sj.

We claim that in Sj, the edges will alternate between south and north edges
with the westmost edge being a south edge and the eastmost edge being a north
edge. Assume to the contrary that there are two consecutive north edges in Sj

(the argument also holds for two consecutive south edges), say e1 = (u1, v1) and
e2 = (u2, v2). Consider the simple paths from v2 to u1 and from v1 to u2 along
the simple cycle C. Since the path from v2 to u1 does not use any edges in
Sj between e1 and e2, it must either wrap around v1 or u2. Say that it wraps
around v1; that is, v1 is on the region defined by the path from v2 to u1, the
edge (u1, v1) and row j + 1 between v1 and v2. Thus, the path v1 to u2 must
either intersect the path from v2 to u1 or cross row j + 1 between e1 and e2.
Since it cannot be the latter, this implies that the paths intersect and hence
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Fig. 1. A view of a grid graph between row j and j + 1 of a counter-clockwise cycle. The cycle has
an “a” component weight of (3−2)+ (8−5) = 4 with respect to rows j and j+1, equal to the number
of unit squares it encloses.

contradicts the fact that C is a simple cycle. The same argument holds if the
path wraps around u2. In that case, we consider the region defined by the path
from v2 to u1, the row j between u1 and u2 and the edge (u2, v2). Since C is a
counter-clockwise cycle, the westmost edge is a south edge and the eastmost
edge being a north edge.

Now let us look at the set of unit squares that lie between row j and j + 1.
Denote this set by R j. The function a(C) restricted to Sj counts the number of
squares in R j that lie between adjacent south and north edges, with the north
edge being to the east of the south edge (cf. Figure 1). This is because the
weight of the kth south edge plus the weight of the kth north edge is equal to
the number of squares between these two edges.

A square in R j is in C if and only if it is between a south and a north edge.
This is because if we look at a partition of the set R j induced by the edges in
Sj, then the partitions alternately fall within and outside of C, with the set of
squares between the first south and north edge lying within the cycle.

Now we sum our index j from 1 to n− 1 and thus get that the sum of the
edge weights of the cycle is equal to the number of squares it encloses.

LEMMA 3.2. Let G be a grid graph. With respect to the weight function w,

for any two vertices u and v, the minimum weight path from u to v, if one exists,

is unique.

PROOF. Suppose there exist two different minimum weight paths P1 and
P2 between u and v. Let u′ be the vertex at which P1 and P2 diverge for the
first time and let v′ be the vertex where they meet after their first divergence.
Denote the subpath of P1 from u′ to v′ by P′1 and the subpath of P2 from u′ to
v′ by P′2 (cf. Figure 2). P1 and P2 both start at u and are not the same. The
existence of u′ implies the existence of v′ as both paths end at v.
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Fig. 2. Paths P1, P2 from u to v.

If P′1 and P′2 have different weights, then without loss of generality assume
w(P′1) < w(P′2). This implies that the subpath of P2 from v′ to v has smaller
weight than the subpath of P1 from v′ to v. Hence, taking P1 from u to v′ and
then taking P2 to v gets a path of smaller weight from u to v in contradiction
to the assumption that P1 and P2 are min-unique paths.

On the other hand, suppose P′1 and P′2 have the same weight. Then, a(P′1) =
a(P′2). Now consider the simple cycle C that follows the path P′1 from u′ to v′ and
then follows the path −P′2 from v′ back to u′. Here, for a path P, −P denotes
the path obtained by reversing the edges in P. It is clear that a(−P) = −a(P)
for any path P. Hence, a(C) = a(P′1)− a(P′2) = 0. This is a contradiction since C

is a nontrivial simple cycle and hence |a(C)| > 0 by Lemma 3.1.

4. EXTENSIONS TO NONPLANAR GRAPHS

In this section we present a few extensions of our main result to certain classes
of nonplanar graphs.

Allender et al. [2005] showed that, if given an embedding on the torus of
a graph of genus 1, the st-connectivity problem is reducible (in deterministic
log-space) to the planar case. As a consequence of our Main Theorem, we have
the following.

COROLLARY 4.1. The directed st-connectivity problem for graphs of genus 1

is in UL ∩ coUL (when given an embedding).

Let G be a class of graphs in which reachability can be decided in complexity
class C. Let G = (V, E) ∈ G. Let G′ = (V, E ∪ E′) be the graph G with an
additional auxiliary edge set E′ that is given as part of the input. We refer to
G as the main graph and G′ the augmented graph. We will show that if |E′| is
not too large, then reachability for the augmented graph can be decided in LC .
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Directed Planar Reachability Is in Unambiguous Log-Space · 4: 11

THEOREM 4.2. Let G′ = (V, E ∪ E′) be a graph such that reachability in

G = (V, E) can be decided in C. Then, if |E′| = O(2
√

log n), then reachability in

G′ can be decided in LC .

PROOF. The idea is to reduce reachability in G′ to reachability in a smaller
graph using reachability for the main graph as an oracle. Construct a graph
whose vertices are labeled by edges in E′ and there is directed edge from the
vertex (u1, u2) to (v1, v2) in this graph if there is a path in G from u2 to v1. Since

this new graph is only of size O(2
√

log n), we can solve reachability in this graph
deterministically in log-space using Savitch’s theorem.

Formally, let isPath(x, y) be a boolean predicate that is true if there is a
directed path p : x y in the main graph G = (V, E) (i.e., there is a path x y

that does not use auxiliary edges). By assumption, isPath(x, y) is computable
in C. Also, let a1 = (u1, v1), a2 = (u2, v2), . . . , am = (um, vm) be the auxiliary edges
(thus, |E′| = m).

We construct a new graph G̃ = (Ṽ, Ẽ) as follows. Let

Ṽ = {vei
|ei ∈ E′} ∪ {s̃, t̃}

Ẽ = E1 ∪ E2 ∪ E3

where

E1 =
{

(s̃, y) | y = (uj, v j) ∈ E′ and isPath(s, uj) is true},
E2 =

{

(x, y) | x = (ui, vi), y = (uj, v j) ∈ E′ and isPath(vi, uj) is true},
E3 =

{

(x, t̃) | x = (ui, vi) ∈ E′ and isPath(uj, t) is true}.

Connectivity from s̃ to t̃ in G̃ can now be accomplished via application of
Savitch’s Theorem, which requires O(log2

m) space (recall that the size of G̃ is

m + 2). For m≤ O(2
√

log n), this simulation runs in space O(log n).
It follows from the definition of G̃ that there is a path from s to t in G′ if and

only if there is a path from s̃ to t̃ in G̃.

The statement of Theorem 4.2 is intentionally general. It is motivated by the
possibility of extending our reachability result to non-planar graphs which may
have one or more crossing edges. In particular, if we are given an embedding
of a graph partitioned into a main graph that is planar and an auxiliary set of
crossing edges, as long as there are not many crossing edges, then we can solve
st-connectivity in this nonplanar graph in UL ∩ coUL.

COROLLARY 4.3. Let G be a class of directed graphs G = (V, E ∪ E′) such

that (V, E) is planar with an auxiliary crossing edge set E′ (given separately)

with |E′| ≤ O(2
√

log n) where n = |V|. Then, st-connectivity for any graph in G

can be decided in UL ∩ coUL.

PROOF. Since (V, E) is planar, by Theorem 1.1 reachability queries in (V, E)
can be decided in UL∩ coUL. By Theorem 4.2, reachability in G can be decided
in LUL∩coUL = UL ∩ coUL.
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4.1 Completeness Results

We now discuss the possibility of extending our main result to grid graphs in
three dimensions. As it turns out, reachability for a very restricted class of grid
graphs in three dimensions, as well as for graphs of thickness-two, is complete
for NL. Thus, extending our weight techniques to any of these classes of graphs
will show that NL = UL.

A three-dimensional grid graph is a directed graph whose vertices are [n]×
[n] × [n] with edges connecting only immediate neighboring grid points. As
before, we identify positive x and y directions with north and east and negative
x and y directions with south and west, respectively. An edge in the positive z

direction ((i, j, k)→ (i, j, k + 1)) is an inward edge and an edge in the negative z

direction is an outward edge.
We call a three-dimensional grid graph monotone (3D-mGG) if there are only

north, east and inward edges. We refer to the st-connectivity for such a graph
as 3D-MGGR and show that it is complete for NL.

THEOREM 4.4. 3D-MGGR is complete for NL.

PROOF. We use the fact that the standard NL-complete reduction which gen-
erates the configuration graph of a log-space Turing machine can be easily
modified to get a topologically sorted DAG. We simply prepend a timestamp to
each configuration which results in a layered acyclic graph. Each layer can use
the canonical ordering to induce a total topological order. Thus, without loss
of generality, we will reduce such a DAG to a 3D monotone grid graph while
preserving st-connectivity.

Let G = (V, E) be a DAG with topologically sorted vertices V = {v1, . . . , vn}.
That is, if (vi, v j) is an edge, then i < j. We construct a 3D monotone grid
graph G′ as follows. For each vertex vi, we make i copies at positions (i, i, k)
for k = 1, . . . , i. We also connect each of the i copies by an edge in the positive
z-direction ((i, i, k) → (i, i, k + 1) for k = 1, . . . , i− 1). This encodes the notion
that if there is a path from any copy of a vertex vi to a copy of a vertex vk, then
there is a path from that copy of vi to (k, k, k).

The kth xy plane (i.e., the set of vertices {(i, j, k) | 1 ≤ i, j≤ n}) encodes edges
to and from vertex vk. We start by adding the path leading in an eastward
direction from (k, k, k); (l, k, k)→ (l+ 1, k, k) for l = k, ..., n−1, so that there is a
path from (k, k, k) to (l, k, k) for each l > k (corresponding to all of the possible
vertices vl for which there might be an edge from vk). Each actual edge (vk, vl)
is encoded by a path from (l, k, k) north to (l, l, k) (i.e., to the copy of vl located
in the kth xy plane). It is easy to see that there is an edge from vk to vl if and
only if there is a path in the kth xy plane from (k, k, k) to the copy of vl in this
plane. An example of this construction from a complete DAG of size 4 can be
found in Figure 3 (note that we identify the y axis in the vertical while the z

axis extends toward the horizon).
The resulting graph is bounded within the n×n×n cube. Furthermore, since

each edge only requires an index look-up, the construction is clearly log-space
computable.
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Fig. 3. A mapped graph resulting from a complete DAG on n = 4 vertices.

Finally, without loss of generality we can assume that s = v1 and t = vn and
so we map s to the single copy of v1 and t to the highest numbered copy of vn,
located at (n, n, n). We claim that there exists a path s  t in G if and only if
there exists a path (1, 1, 1) (n, n, n) in G′. The construction clearly preserves
st-connectivity.

This reduction can be further modified to give us a characterization of NL
in terms of graph thickness. The usual graph-theoretic notion of thickness of
a graph G is defined as the minimal number of planar subgraphs whose union
is G [Gibbons 1985]. Intuitively, we can think of thickness as the minimal
number of transparencies required to draw the graph so that no edges cross
within any single transparency. Clearly, a graph is planar if and only if it
has thickness-one. Surprisingly, however, thickness-two suffices to capture all
of NL.

We’ll actually show that completeness holds for an even more restrictive no-
tion of thickness called geometric thickness [Hutchinson et al. 1995; Dillencourt
et al. 2000]. The geometric thickness of a graph G is defined as the minimal
number k such that we can assign planar point locations to the vertices of G,
represent each edge as a line segment, and assign each edge to one of k trans-
parencies so that no two lines cross in any one transparency. The difference
between these two notions is that geometric thickness requires that all vertex
placements be consistent across all transparencies.

THEOREM 4.5. The st-connectivity problem for (geometric) thickness-two

graphs is complete for NL. Moreover, each transparency is a monotone grid

graph.

PROOF. We will make use of the 3D monotone grid graph that results by
applying the reduction in Theorem 4.4. We start by embedding each xy-layer
(identified as Lk, 1 ≤ k ≤ n) in the first transparency. We do so by laying each
layer above the previous layer, shifting it one unit eastward. That is, the lower
left corner of each layer Lk is mapped to (k, (k− 1)n + 1) while the upper-right
corner is mapped to ((k + n− 1), nk). This results in a 2(n− 1) × n2 − 1 sized
grid.
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We now embed the inward z-edges using the second transparency. We will
do so by routing them inside the grid defined by the xy planes. In order to do
this, we first expand the grid by 3: each unit square is replaced by a 3× 3 grid,
leading to a fine-grid. Thus, each (i, j) coordinate in the first grid maps to

(

(3i− 2), (3 j− 2)
)

in the fine grid.
We now have room to route the z-edges through the second transparency.

Consider the z edges between layer Lk and Lk+1: (i, i, k) → (i, i, k + 1) for i =
k + 1, . . . , n in the original 3D-mGG. The initial and final vertex get mapped to

((k + (i− 1)), (k− 1)n + 1 + (i− 1)) = (k + i− 1, (k− 1)n + i)

and

((k + 1) + (i− 1), (k + 1− 1)n + 1 + (i− 1)) = (k + i, nk + i)

respectively. In the expanded fine grid they are located at
(

3[k + i− 1]− 2, 3[(k− 1)n + i]− 2
)

and
(

3[k + i]− 2, 3[nk + i]− 2
)

,

respectively. We will capture the connectivity of this edge by routing a path
between these two grid points on the second transparency, avoiding contact
with other z-edge/paths in the second transparency. First, we travel east one
edge in the fine-grid:
(

3[k + i− 1]− 2 + 1, 3[(k− 1)n + i]− 2
)

=
(

3[k + i− 1]− 1, 3[(k− 1)n + i]− 2
)

.

We then travel north until we have cleared the sub-grid corresponding to Lk;
that is to

y = 3nk− 1

on the fine-grid. We then travel east again for one edge;
(

3[k + i− 1]− 1 + 1, 3nk− 1
)

=
(

3[k + i− 1], 3nk− 1
)

and continue north again to the same row as the final vertex:

y = 3[nk + i]− 2.

At this point, we simply travel east again one more edge and arrive at
(

3[k + i− 1] + 1, 3[nk + i]− 2
)

=
(

3[k + i]− 2, 3[nk + i]− 2
)

the intended final vertex.
This reduction is illustrated (cf. Figure 4) for the first few layers resulting

from the complete DAG on 4 vertices from Figure 3.
It is not difficult to see that the reduction results in only two transparencies

each of which avoids any edge crossings. Moreover, the reduction is clearly
log-space computable.
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Fig. 4. First two layers of the thickness-two reduction on the DAG in Figure 3. Lighter directed
edges correspond to the first transparency while the darker (routing) paths are on the second
transparency.

In fact, the reduction in Theorem 4.5 is even stronger: each transparency is
actually a directed forest embedded as a monotone grid graph.

Extending our Main Theorem by defining a weight function for 3D monotone
grid graphs or thickness-two graphs appears difficult however. One of the key
arguments used in our proof exploits the fact that equal weight paths neces-
sarily intersect on the 2D grid. This is not necessarily true in the 3D case as
the obvious extensions of our weight function allow equal weight paths that do
not intersect.

5. CONCLUSION

We have shown that the st-connectivity problem for directed planar graphs can
be decided in UL ∩ coUL, improving over the known upper bound of NL. We
have also given several extensions to nonplanar graphs and some completeness
results.

The most direct and important open question is to show that NL = UL un-
conditionally. We believe that the result of this paper is a definite step towards
solving this problem. We gave an easy log-space reduction from general di-
rected graph reachability to reachability in graphs with thickness two. Can we
reduce general directed graph reachability to PLANARREACHor even to reacha-
bility in graphs with genus one? This would show NL = UL. On the other hand,
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as there are no known complete problems for UL∩coUL, there might be a better
upper bound for PLANARREACH. Specifically, can we show PLANARREACH∈ L?

Another general question is to place more problems of interest in UL. Very
recently, there has been some progress reported in this direction. After the
publication of the conference version of this paper, our main result was used to
establish new, similar upper bounds. Thierauf and Wagner [2008] extended our
result to show that shortest distance in a planar graphs can also be computed
in UL. They use this fact to show that the isomorphism problem for planar
3-connected graphs can be decided in UL ∩ coUL. Limaye et al. [2009] have
shown that the longest path problem for planar DAGs also is solvable in UL.
Finally, Datta et al. [2007; 2008] use similar weighting techniques to establish
improved upper bounds for bipartite planar matching problems.
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