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Abstract. Yao (in a lecture at DIMACS Workshop on structural com-
plexity and cryptography, 1990) showed that if a language L is 2-locally
random reducible to a Boolean function, then L ∈ PSPACE/poly. Fort-
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1. Introduction

Informally a language L is locally random reducible (in short lrr) to a target
function f if, for any input x, membership of x in L can be efficiently reduced
to k random instances of f . If the reduction makes k queries then it is called
a k-local random reduction. Additionally if the target function is the language
L itself then it is called a random self-reduction. Such random reducibility
notions have been very useful in many areas of theoretical computer science
including, complexity theory, cryptography, and private information retrieval.
For example, it is known that if a language is random-self reducible, then its
worst-case complexity is same as the average-case complexity. These notions
also plays an important role in the design of program checkers. Refer to the
paper by Feigenbaum (1993) for a survey on locally random reductions and
their applications.

For a language L, is there a function f so that L locally random reduces
to f? Beaver & Feigenbaum (1990) showed that this is true: any language L
is (n + 1)-locally random reduces to a specific function f . Beaver et al. (1997)
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improved this result to show that in fact, for any language L, there is a function
f so that L (n/ log n)-locally random reduces to f . In these constructions the
range of the target function is very large (in fact Ω(2n)).

A natural question that arises is whether the result of Beaver et al. (1997)
is optimal when we consider the number of queries? For every language L, is
there a function f such that L locally random reduces to f using less than
n/ log n queries? Are there languages that are not k-lrr to any function, for a
constant k? For k = 1, Abadi et al. (1989) showed that a language that is 1-lrr
to some function is in NP/poly. Thus there exist languages that are not 1-lrr
to any function.

What happens when we allow two queries? Is there a language that is not
2-lrr to any function? Surprisingly, this question turns out be difficult. Yao
considered the following weaker question: Is there a language that is not 2-lrr
to any Boolean function—a function whose range is {0, 1}. He showed that
any language that is 2-locally random reducible to a Boolean function is in
PSPACE/poly. Fortnow & Szegedy extended Yao’s result to show that such
languages are in fact in NP/poly ∩ co-NP/poly (Fortnow & Szegedy 1992).
Thus there exist languages that are not 2-lrr to any Boolean function. For
the general case when the target function is not restricted to be Boolean the
question of whether there are languages that are not 2-lrr is still open.

It is to be mentioned that in the case of random self reductions more results
are known. Feigenbaum et al. (1990) showed that any function (need not
be a language/Boolean function) that is uniform 2-random self-reducible is
in fNP/poly (fNP is the functional version of NP). Feigenbaum & Fortnow
(1993) showed that if an NP-complete set such as SAT is poly(n)-random self-
reducible with nonadaptive queries, then the Polynomial Hierarchy collapses.

In this paper we consider the following question: can we extend the results
of Yao, and Fortnow and Szegedy, for target functions other than Boolean?
Building on the work of Yao, and Fortnow and Szegedy, we show that there
exist languages that are not 2-locally random reducible to any function whose
range is {0, 1, 2} (3-valued function). We obtain this result by showing that
every language that is 2-lrr to a 3-valued function is in PSPACE/poly.

Theorem 1.1. If a language L is 2-locally random reducible to functions g
and h that take values in {0, 1, 2}, then L ∈ PSPACE/poly.

Locally random reductions are closely related to the notion of locally de-
codable codes. An error-correcting code C : Σn → Σm is a k-locally decodable
code, if every single bit of the original data x can be recovered by probing k
locations of a word y that is close to C(x). Locally decodable codes have found
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many applications in complexity theory. We refer the reader to the excellent
survey paper by Trevisan (2004) for more on locally decodable codes and their
applications.

Ideally we would like to design locally decodable codes for which m is com-
parable to n. This raises the following question: If C : Σn → Γm is a locally
decodable code, then what is the minimum value of m? This question was first
raised by Katz & Trevisan (2000). They showed that if C is a k-locally decod-
able code, then m must be super linear in n. Goldreich et al. (2002) obtained
an exponential lower bound for the special case of linear 2-locally decodable
codes. Deshpande et al. (2002) extended the results of Katz and Trevisan to
the case of adaptive codes. Kerenidis & de Wolf (2003) and Wehner & de Wolf
(2005) generalized the result of Goldreich et al. (2002) to the case of all 2-locally
decodable codes. More specifically, they showed that m = 2Ω(n). Their proof
interestingly uses quantum information theory.

Here we consider perfectly smooth codes, a special case of locally decodable
codes. Results of Kerenedis & de Wolf and Wehner & de Wolf when applied
to the special case of 2-perfectly smooth codes yield a lower bound of 2n/4.
We observe that Yao-Fortnow-Szegedy proof can be adapted to show that if
C : {0, 1}n → {0, 1}m is a 2-perfectly smooth code, then m ≥ 2n−1.

Theorem 1.2. If C : {0, 1}n → {0, 1}m is a 2-perfectly smooth code, then
m ≥ 2n−1.

It appears that extending our result and the results of Yao, and Fortnow &
Szegedy for 3-lrr is difficult as this might lead to an exponential lower bound for
the length of 3-locally decodable codes which is an outstanding open problem.

2. Lower bound for locally random reductions

Definition 2.1 (locally random reduction). A language L is k-locally ran-
dom reducible (k-lrr) to functions g1, . . . , gk if there are polynomial-time func-
tions σ and f and a polynomial q so that

- ∀x ∈ {0, 1}∗,∀r ∈ {0, 1}q(|x|), L(x) = f(g1(σ(1, x, r)), . . . , gk(σ(k, x, r)), x, r)

- for all i, σ(i, x, r) and σ(i, y, r) are identically distributed when |x| = |y|
and r ∈ {0, 1}q(|x|) is chosen uniformly at random.

Now we will state and prove our main result.

Theorem 1.1. If a language L is 2-locally random reducible to functions g
and h that take values in {0, 1, 2}, then L ∈ PSPACE/poly.
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First we give an informal overview of the proof.

2.1. Overview of the proof. For this informal description, we assume that
the target functions g and h are the same. We first briefly explain the idea
behind Yao-Fortnow-Szegedy’s proof as our proof builds on this. The basic
idea in both proofs is to compute answers of all the possible queries asked on
inputs at a fixed length. A polynomial amount of information is given as advice
for this computation.

Let L be a language that is 2-lrr to a Boolean function g. Given a string
x, let p and q be two queries produced by the reduction using a random string
r. Suppose the membership of x in L depends only on p, and does not depend
on q. Then by knowing g(p) we can decide x. In this case, we say p sets x.
Suppose p does not set x. This means the membership of x in L depends on
both p and q. The crucial observation is the following: When p does not set
x, given g(p), whether x belongs to L or not precisely depends on whether
g(q) is 0 or 1. Thus, in this case, by knowing g(p), and L(x) we can deduce
the value of g(q). We call this scenario p forces q via x. Now, the proof of
Yao-Fortnow-Szegedy goes as follows. Let P = {p1, · · · pm} be a set of queries
whose answers we know, i.e, we know the values of g(pi), 1 ≤ i ≤ m. Let x
be the input string. If there exists a p ∈ P that sets x then we can decide
the membership of x in L easily. On the other hand if no p in P sets x, then
for every p there exists a query q such that p forces q via x. Thus by giving
L(x) as advice we can compute the value of g(q) for all these q’s. Thus the
set of queries whose answers we know has doubled if we are given the value
of L(x). Applying this argument iteratively we can decide answers to all the
queries by specifying L(x) for a polynomially small set of x’s. This idea can be
implemented to show that L is in NP/poly.

Now let us consider when g is a 3-valued function. The above proof does
not go through directly. In particular, if membership of x in L depends on both
p and q, as g is 3-valued, we cannot deduce the value of g(q) from the values
of g(p) and L(x). We get around this problem by using a majority argument.

Let P = {p1, · · · pm} be a set of queries whose answers we know. Let x
be the input string. If there exists a p ∈ P that sets x then we can decide
the membership of x in L. So consider the case where no p ∈ P set x. For a
p ∈ P , let q be the second query. By considering all three possible values (0, 1,
and 2) for g(q), we compute possible values for L(x). Since L(x) is Boolean it
has only two possible values and hence there exist two possible values of g(q)
that predicts L(x) = a and one possibility for g(q) that predicts L(x) = a,
for an a ∈ {0, 1}. A crucial point is that in the latter case we can deduce the
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value of g(q) from the values of g(p) and L(x). Let ap denote the predicted
value of L(x) for a majority over 3 possible settings for the value of g(q). Let
ax = Majorityp∈P{ap}. Our strategy is the following: if ax 6= L(x) then we will
give the value of L(x) as advice. In this case, for a majority of p ∈ P , there
is only one value of g(q) that result in L(x) and for all the qs corresponding
to these ps, we can deduce the value of g(q). Thus by giving L(x) as advice,
we can deduce values of additional m

2
queries. We can apply this argument a

polynomial number of times to compute the values of all possible queries. We
show how this strategy can be implemented to get a PSPACE/poly algorithm
for L. A detailed proof follows.

2.2. Detailed proof.

Proof. Since L is 2-locally random reducible to g and h, there exist polynomial-
time computable functions f, σ such that for every x,

∀r, f(g(σ(1, x, r)), h(σ(2, x, r)), x, r) = L(x).

Moreover, for every x, y, |x| = |y|, the random variables σ(1, x, r) and σ(1, y, r)
are identically distributed, and the random variables σ(2, x, r) and σ(2, y, r)
are also identically distributed.

We will first introduce some notation that we use for the rest of the proof.
σ(1, x, r) and σ(2, x, r) will be denoted by σ1(x, r) and σ2(x, r) respectively.
We will use p’s to denote the first queries and q’s to denote the second queries.

Given x, let P (x) denote the multi-set of all possible first queries, and Q(x)
denote the multi-set of all possible second queries. That is P (x) = {σ1(x, r)|r ∈
{0, 1}q(|x|)} and Q(x) = {σ2(x, r)|r ∈ {0, 1}q(|x|)}. We stress that both P (x)
and Q(x) are multi-sets.

Without loss of generality, we assume that we can easily distinguish first
queries from second queries. Let m be a bound on the length of queries in P (x)
and Q(x). Since, σ1, and σ2 are polynomial time-computable, m = poly(n).
Since L is 2-locally random reducible to g and h, if x and y are of same length,
then P (x) = P (y) and Q(x) = Q(y). We will denote P (0n) with Pn and Q(0n)
with Qn.

Given a multi set A consisting of zeros and ones, let MAJ(A) = 1 if at least
half the members of A are 1, else MAJ(A) = 0.

Definition 2.2. For an x and r, let p = σ1(x, r).
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- We say p sets x if the membership of L(x) can be decided by knowing
only g(p), i.e.,

f(g(p), 0, x, r) = f(g(p), 1, x, r) = f(g(p), 2, x, r) = L(x).

- We say p and x force q if h(q) can be computed by knowing g(p) and
L(x). I.e., there exists unique b ∈ {0, 1, 2} such that

f(g(q), b, x, r) = L(x).

- We say that p weakly sets x if MAJ({f(g(p), 0, x, r), f(g(p), 1, x, r), f(g(p), 2, x, r)}) =
L(x).

Similarly we can define setting, forcing, and weak setting for second query
q = σ2(x, r).

Observation: Note that if p does not set or weakly set x then p and x force
q.

For each n we will construct a “query tree” Tn. Each node of the tree is
labeled with a query from the multi sets Pn or Qn and each level of the tree will
be associated with a string x ∈ {0, 1}n. The tree will be such that by knowing
L(x) for each of these x’s, we will be able to get answers to any query in the
query tree using a PSPACE procedure.

We now give the construction of Tn. Consider strings in {0, 1}n in the
lexicographic order. For a string x, x + 1 denotes string which follows x in this
ordering. Let ⊥ be a special string and assume ⊥ < x for every x.

Construction Level 1
1. Fix a query p0 from Pn and label the root of the tree with p0

Let x0 = ⊥. Assume that we have built k levels of the tree and let x1, x2,
· · · , xk−1 be the strings associated with each level of the tree. We now define
the tree at level k+1 and associate a string xk with level k. Define the following
multi-sets.

Q′
k = {q | q ∈ Qn, and q is at level k},

P ′
k = {p | p ∈ Pn, and p is at level k}.

If xk−1 = 1n (we have exhausted all the input strings), or Q′
k = Qn and

P ′
k = Pn (we have exhausted all the queries), then Tn is completely defined.

Else, we construct level k + 1 by the following procedure.
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Construction Level k + 1
1. x← xk−1 + 1
2. If either (a). There exists a query q at level k that sets x, or

(b). There exists r such that both σ1(x, r) and σ2(x, r) are in level k
then x← x + 1 and Goto Step 2

3. For each p ∈ P ′
k, let rp be the lexicographically least r such that σ1(x, rp) = p

For each q ∈ Q′
k, let rq be the lexicographically least r such that σ2(x, rq) = q

Let ap = MAJ{f(g(p), 0, x, rp), f(g(p), 1, x, rp), f(g(p), 2, x, rp)}
aq = MAJ{f(0, h(q), x, rq), f(1, h(q), x, rq), f(2, h(q), x, rq)}

4. Consider the multi set A = {aq | q ∈ Q′
k} ∪ {ap | p ∈ P ′

k}
If MAJ(A) = L(x), then x← x + 1 and Goto Step 2

5. Else /* define nodes at level k + 1, and associate a string with level k */
Associate the string x with level k
For every v ∈ Q′

k ∪ P ′
k such that av = L(x), v has only one child with label v

For each p ∈ P ′
k such that ap 6= L(x), p has two children with labels p and σ2(x, rp)

For each q ∈ Q′
k such that aq 6= L(x), q has two children with labels σ1(x, rq) and q

We now show some properties of the tree Tn. Let xk be the string associated
with level k. We first start with the following observation.

Claim 2.3. Let p ∈ P ′
k, let q = σ2(xk, rp). If ap 6= L(xk), then xk and p force

q. Similarly, let q ∈ Q′
k, let p = σ1(xk, rq). If aq 6= L(xk), then xk and q force

p.

Proof. Let

M = {f(g(p), 0, xk, rp), f(q(p), 1, xk, rp), f(g(p), 2, xk, rp)}.

Since xk is the string associated with level k, p does not set xk. Thus, all the
elements in the multi-set M can not be the same. Since ap = MAJ(M) 6= L(xk),
there exists a unique b ∈ {0, 1, 2} such that L(xk) = f(g(p), b, xk, rp). Thus
knowing the values of L(xk) and g(p) gives the value of h(q). Thus xk and p
force q. Proof of the the second part of the claim is identical. �

Let Sk be the multi-set consisting of all nodes at level k. Next we show that
size of Sk+1 is considerably larger than the size of Sk.

Claim 2.4. ∀k, |Sk+1| ≥ 3
2
|Sk|.
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Proof. Let xk be the string associated with level k. Step 5 of the above
construction defines the nodes in level k + 1. Observe that every node at level
k has either one or two children. Every q ∈ Q′

k, for which aq = L(xk), has
exactly one child, and every q ∈ Q′

k, for which aq 6= L(xk), q has exactly two
children. Similarly, every p ∈ P ′

k, for which ap = L(xk), has exactly one child,
and every p ∈ P ′

k, for which ap 6= L(xk), p has exactly two children.

By definition of xk, we know L(xk+1) 6= MAJ(A), where A = {aq | q ∈
Q′

k} ∪ {ap | p ∈ P ′
k}. Thus for more than half nodes v in level k, av 6= L(xk).

All such nodes have exactly two children. Thus |Sk+1| ≥ 3
2
|Sk|. Note that here

we use the fact that the sets Sk, Sk+1, P ′
k, and Q′

k are multi sets. �

Corollary 2.5. Depth of Tn is poly(n).

Claim 2.6. Let u be a first query, and let k be a level at which u appears.
Given g(u) and L(xk), there is a PSPACE algorithm that computes the children
of u. Moreover, for each child v of u, g(v) (h(v) if v is a second query) can be
computed in PSPACE. A similar claim holds if u is a second query.

Proof. Let k be a level at which u appears. Compute the least r such that
σ1(xk, r) = u. Let v = σ2(xk, r). Note that r can be computed in PSPACE
and given r, v can be computed in polynomial-time. Compute

au = MAJ({f(g(u), 0, xk, r), f(g(u), 1, xk, r), f(g(u), 2, xk, r}).

By the construction of Tn, if au = L(xk), u has only one child with label u. In
this case we know the value of g(u). Else au 6= L(xk). In this case u has two
children with labels u and v. Since au 6= L(xk), by Claim Claim 2.3, u and xk

force v. Since g(u) and L(xk) are known, h(v) can be computed. Thus h(v)
can be computed in PSPACE. �

Next we claim that given g(p0), 〈x1, L(x1)〉, · · · , 〈xd, L(xd)〉 where d is the
height of the tree Tn, the tree Tn can be traversed in PSPACE. Given a node
u, let value(u) = g(u) if u is a first query, otherwise value(u) = h(u).

Claim 2.7. Let u a node. Given g(p0), 〈x1, L(x1)〉, · · · , 〈xd, L(xd)〉 where d is
the height of the tree Tn, and a level k, there is a PSPACE algorithm checks if
u appears at level of Tn. If u appears at level k, then this algorithm computes
value(u).
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Proof. Let Reach(w, value(w), u, s) be a subroutine that returns true if
u can be reached from w in exactly s steps. Consider the following recursive
algorithm.

Reach(w, value(w), u, s)
1 Current← w;
2 For each child v of Current
3 Compute value(v);
4 If Reach(v, value(v), u, s− 1) = true, then return true.

By Claim Claim 2.6, Step 3 can be done in PSPACE. The recursion termi-
nates when s = 1. Again by Claim Claim 2.6, given L(xk), Reach(node, value(node), u, 1)
can be computed in PSPACE. By Claim Claim 2.6, it follows that value(u)
can also be computed in PSPACE. Since the maximum out degree of Tn is 2,
the above procedure can implemented in PSPACE. �

Now we are ready to give a PSPACE/poly algorithm for L. The algorithm
is given the advice 〈x1, L(x1)〉, · · · , 〈xd, L(xd)〉, p0 and g(p0). Let x be the
given input. If x is one of x1, · · · , xd, then L(x) can be computed trivially. Let
xk−1 < x < xk. Since x is not the string associated with level k + 1, one of the
following must hold:

1. There exists a node v at level k that sets x.

2. There exists a r such that σ1(x, r) and σ2(x, r) appear at level k.

3. Majority of nodes at level k weakly set x.

We can check if Statement 1 holds or not as follows: For each r compute
v = σ1(x, r). Check if v appears in level k of Tn and if it appears compute g(v).
By, Claim Claim 2.7 this can be done in PSPACE. Now, we can check if v sets
x. If none of the first queries set x, check if any of the second queries sets x. If
we succeed in finding a v that sets x, then we know L(x).

If Statement 1 does not hold, we can check if Statement 2 holds as follows:
For each r compute u = σ1(x, r) and v = σ2(x, r). By Claim Claim 2.7, in
PSPACE, we can find if u and v occur at level k. If so, we can also compute
g(u) and h(v) and thus compute L(x). Thus if Statement 2 holds, then also
L(x) can be computed in PSPACE.

If Statement 1 and Statement 2 both do not hold, then Statement 3 must
hold. For each node v at level k compute av, also compute majority of av’s.
This can be done in PSPACE as we can systematically generate each node at
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level k. Since Statement 3 holds, majority of nodes at level k weakly set x.
Thus majority of av’s is the value of L(x).

Thus L is in PSPACE/poly. �

2.3. Discussion on difficulty in extending to the 4-valued case. Can
we extend our techniques to show upper bounds on 2-local random reduction to
k-valued functions for k > 3? In our proof it was crucial that we could extend
the notion of forcing from Boolean case to the 3-valued case. It appears to be
difficult to extend this notion even to the 4-valued case. For this discussion,
we use the notation used in Section 2.1. On an input x and random string r,
let p and q be the two queries asked by the reduction. As before, let us assume
that we know the value of g(p) and L(x) and we are trying to deduce the value
of g(q). Possible values for g(q) are {0, 1, 2, 3}. If it were the case that out of 4
settings of the values of g(q) there is only one value that will correctly predict
L(x), then p and x will force q. But the scenario where there are two setting for
g(q) which gives rise to L(x) and two settings for g(q) which gives rise to L(x)
we cannot uniquely determine the value of g(q) by knowing g(p) and L(x). At
present we do not know how to overcome this situation.

3. Relations to perfectly smooth codes

Notions of locally random reductions, private information retrieval, and lo-
cally decodable codes are closely related. For example, it is known that lower
bounds on locally decodable codes yield lower bounds on private information
retrieval (Goldreich et al. 2002). Beigel et al. (2006) showed that techniques
used to show upper bounds on locally random reductions can be used to obtain
lower bounds on private information retrieval. In this section we observe that
the techniques used to show upper bounds on locally random reductions yields
lower bounds on certain locally decodable codes also.

Definition 3.1. A code C : {0, 1}n → Γm, is (k, δ, ε)-locally decodable if
there exists a probabilistic oracle algorithm A such that for every message
X ∈ {0, 1}n, index i ∈ {0, · · · , n}, and a string y such that d(y, C(x)) ≤ δm,
A on input i makes k random queries to y (given as oracle to A) and outputs
xi with probability at least 1/2 + ε.

Perfectly smooth codes are a special case of locally decodable codes.

Definition 3.2. A code C : {0, 1}n → Γm is a k-perfectly smooth code if
there is a probabilistic oracle algorithm A such that for every X ∈ {0, 1}n and
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index i, 1 ≤ i ≤ n, A on input i makes k random queries to C(X) (given as
oracle to A) and outputs xi with probability 1. Moreover, for all i and j, the
jth query is uniformly distributed in {1, . . . ,m}.

We show that if C : {0, 1}n → {0, 1}m is a 2-perfectly smooth code, then
m ≥ 2n−1. This proof is based on Yao and Fortnow & Szegedy’s proof. This
bound is very close to optimal as Hadamard code is a 2-perfectly smooth code
with code length m = 2n − 1.

Theorem 1.2. If C : {0, 1}n → {0, 1}m is a 2-perfectly smooth code, then
m ≥ 2n−1.

Proof. Let C : {0, 1}n → {0, 1}m is a 2-perfectly smooth code. Consider a
Kolmogorov random string X ∈ {0, 1}n (string with Kolmogorov complexity
K(X) = n). We will argue that if m < 2n−1 then K(X) < n.

Assume that A is a probabilistic oracle decoding algorithm that we have
for the code C. On an index i and a random string r, A makes two queries
which we call the first query and the second query. Let X = x1 · · ·xn and
let C(X) = y1 · · · ym be the code word of X. First we assume that for two
random strings r1 and r2 producing two distinct first queries p1 and p2, the
corresponding second queries are also distinct (this assumption is not without
loss of generality, but we can argue that since both the first and the second
queries are distributed uniformly, there should exists random strings r1 and r2

which produce first queries p1 and p2 so that if p1 6= p2 then the corresponding
second queries are also distinct and we can focus on these set of random strings
for the rest of the argument).

We will construct a binary tree with nodes labeled by queries (a query is
an index between 1 and m). We will associate each level of the tree (except
the last level) by a bit of X. The tree is constructed in stages. The root of the
tree is labeled with query 1. Assume that the kth level has been constructed
and let Pk be the set of first queries and Qk the set of second queries that label
the nodes in level k. Also let xi1 , · · · , xik−1

be the bits associated with levels 1
through k − 1. Now we will explain how to associate a bit of X with level k
and how to construct and label the nodes of level (k+1). Assume that we have
considered the first j bits x1 . . . xj of X. We will associate the kth level with the
next bit from the remaining xj+1, · · · , xn bits (considered in that order) that
is independent of the tree constructed so far. Let us explain what we mean by
independent. We call the jth bit xj of X independent if none of the following
three conditions are satisfied: (a) there is a random string r so that both the
queries by A on input j and random string r are from Pk ∪Qk or (b) there is a
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random string r such that the first query by A on input j and random string
r is in Pk and it sets xj or (c) there is a random string r such that the second
query by A on input j and random string r is in Qk and it sets xj. Here we can
define the notion of setting as in the earlier section: a query p on random string
r sets xj if the output of A(j) with random string r and queries p and q does
not depend on the answer to the query q. Associate the kth level with the next
xl that is independent. That is xik = the first independent xl in X after xik−1

.
Now we will explain how to construct the nodes in level k +1. For each p ∈ Pk

let r be a random string for which p is the first query made by A on input l
and random string r. The left child of p is p itself and the right child of p is q
where q is the corresponding second query. Similarly we can define the children
for a query q ∈ Qk. Since xl is independent |Pk+1∪Qk+1| = 2×|Pk ∪Qk| (each
query produces a new query). So the number of distinct queries at level k + 1
is 2k. We end the construction when there are no more independent bits of X
remaining. Let there be t internal levels for this tree (do not count the last
level where the nodes are leaves).

The idea is that if the bit xj is not independent then it can be effectively
constructed from the previous independent bits of x and the first bit y1 of the
codeword C(X). This is because using y1 and the independent bits of X before
xj, we can deduce the answers to the queries at level k. Therefore the string
X can be reconstructed from the string y1xi1 · · ·xit . Since X is Kolmogorov
random, we should have n ≤ t + 1. So m ≥ |Pt+1 ∪Qt+1| = 2t ≥ 2n−1.

�

We remark that Kerenidis & de Wolf (2003) and Wehner & de Wolf (2005)
obtained exponential lower bounds for 2-locally decodable codes using quantum
information theory. Their results when applied to the special case of 2-perfectly
smooth codes with |Γ| = 2 yields a lower bound of 2n/4. The above theorem
gives a better lower bound and does not use tools from quantum information
theory.

An obvious question is whether the proof of Theorem 1.1 can be used to
obtain lower bounds for 2-perfectly smooth codes with |Γ| = 3. The proof
of Theorem 1.1 indeed gives a lower bound for this case also, however this
bound is weak. Let C be a 2-perfectly smooth code from {0, 1}n to Γn, where
|Γ| = 3. Let X be a Kolmogorov random string from {0, 1}n. Using ideas
from Theorem 1.1, we can show that X can be described by a string of length
log n log3/2 m. Thus we obtain that m ≥ 2n/ log n. However, Kerenidis & de Wolf

(2003) and Wehner & de Wolf (2005) give 2Ω(n) bound for this case.
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4. Concluding Remarks

Some lower bound techniques known for locally decodable codes can be used
to prove similar results for locally random reductions. In particular, techniques
of Katz & Trevisan (2000) and Deshpande et al. (2002) can be used to show
that any language that is k-lrr to a function is in PSPACE/2εn for ε = 1− 1

k
.

The locally random reduction that we consider in this paper does not allow
errors. This is true for lower bound results in Yao (1990), Fortnow & Szegedy
(1992), and Feigenbaum et al. (1990). Extending these techniques to the gen-
eral nonzero error case is interesting since it may lead to a non-quantum proof
of exponential lower bounds for 2-locally decodable codes: currently the known
exponential lower bound proofs for 2-locally decodable codes use quantum in-
formation theory (Kerenidis & de Wolf 2003; Wehner & de Wolf 2005).
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