
comput. complex. 21 (2012), 643 – 670

c© Springer Basel AG 2012

1016-3328/12/040643-28

published online September 25, 2012

DOI 10.1007/s00037-012-0047-3 computational complexity

ON THE POWER OF

UNAMBIGUITY IN LOG-SPACE

A. Pavan, Raghunath Tewari,

and N. V. Vinodchandran

Abstract. We report progress on the NL versus UL problem.
– We show that counting the number of s-t paths in graphs where

the number of s-v paths for any v is bounded by a polynomial can
be done in FUL: the unambiguous log-space function class. Sev-
eral new upper bounds follow from this including ReachFewL ⊆
UL and LFew ⊆ ULFewL.

– We investigate the complexity of min-uniqueness—a central
notion in studying the NL versus UL problem. In this regard
we revisit the class OptL[log n] and introduce UOptL[log n], an
unambiguous version of OptL[log n]. We investigate the relation
between UOptL[log n] and other existing complexity classes.

– We consider the unambiguous hierarchies over UL and
UOptL[log n]. We show that the hierarchy over UOptL[log n] col-
lapses. This implies that ULH ⊆ LpromiseUL thus collapsing the UL
hierarchy.

– We show that the reachability problem over graphs embedded on
3 pages is complete for NL. This contrasts with the reachability
problem over graphs embedded on 2 pages, which is log-space
equivalent to the reachability problem in planar graphs and hence
is in UL.

Keywords. Log-space complexity, unambiguous computations, graph
reachability, log-space optimization, hardness.

Subject classification. 68Q05, 68Q10, 68Q15, 68Q17.

Birkhäuser

644 Pavan, Tewari & Vinodchandran cc 21 (2012)

1. Introduction

This paper is centered around the NL versus UL problem. Can
nondeterministic space bounded computations be made unambig-
uous? This fundamental question was first raised by Reinhardt
& Allender (2000) in the paper entitled “Making Nondeterminism
Unambiguous”. They showed that in the nonuniform setting it is
indeed possible to simulate any nondeterministic log-space compu-
tation by an unambiguous one (that is, NL/poly = UL/poly), thus
giving the first strong evidence that this relation might hold in the
uniform setting as well.

A nondeterministic machine is unambiguous if it has at most
one accepting path on any input (Valiant 1976). UL is the class
of decision problems that are decided by unambiguous log-space
bounded nondeterministic machines. Clearly, UL is the natural
log-space analog of UP (Valiant 1976), the unambiguous version
of NP. Historically, several researchers have investigated this class
(for example, by Àlvarez & Jenner 1993; Buntrock et al. 1992,
1993, 1991) in different contexts. But Buntrock et al. (1991) are
the first to conduct a focused study of the complexity class UL and
its variations.

Since the above-mentioned paper due to Reinhardt and
Allender, there has been progress reported on the NL versus UL
problem. Allender et al. (1999b) showed that, under the (very
plausible) hardness assumption that deterministic linear space has
functions that cannot be computed by circuits of size 2εn, the con-
structions given by Reinhardt & Allender (2000) can be deran-
domized to show that NL = UL. As the reachability problem for
directed graphs is complete for NL, it is natural to investigate the
space complexity of reachability for subclasses of directed graphs
and indeed the recent progress has been in this direction. Bourke
et al. (2009) showed that reachability for directed planar graphs
is in UL. Subsequently, Thierauf & Wagner (2009) showed that
reachability for K3,3-free and K5-free graphs can be reduced to
planar reachability in log-space. Kynčl & Vyskočil (2010) showed
that reachability for bounded genus directed graphs also reduces
to the planar case. Thus, reachability for these classes of graphs is
also in UL.

cc 21 (2012) On the power of unambiguity in log-space 645

These results provide significant evidence that NL equals UL
and establishing this fundamental equivalence may be within the
reach of current techniques.

Our results.

Reachability in graphs with few paths. FewL, the log-space
analog of the polynomial time class FewP (Allender 1986; Cai &
Hemachandra 1990) is the class of languages that are decided by
nondeterministic log-space machines that have the property that
on any input there are at most polynomially many accepting paths
(Buntrock et al. 1992, 1991). Is FewL = UL? As FewL ⊆ NL, this
is a very interesting restriction of the NL = UL question (Allender
2006 showed that FewL is in LpromiseUL). While we are unable to
show that FewL ⊆ UL, we prove new unambiguous upper bounds
for complexity classes related to FewL.

As one of our main results, we show that counting the number
of s-t paths in graphs where the number of paths from s to any
node is bounded by a polynomial is in the unambiguous function
class FUL.

This result immediately implies a new upper bound
ReachFewL ⊆ UL.1 ReachFewL is a restriction of FewL (Buntrock
et al. 1991). A nondeterministic machine M is called a reach-few
machine, if on any input x and any configuration c of M(x), the
number of paths from the start configuration to c is bounded by
a polynomial. ReachFewL is the class of languages decided by a
reach-few machine that is log-space bounded. Our result improves
on the previous known trivial upper bound of ReachFewL ⊆ FewL.

The class ReachFewL was also investigated by Buntrock
et al. (1993) under the notation NspaceAmbiguity (log n, nO(1)).
Buntrock et al. (1993) define, for a space bound s and an
unambiguity parameter a, the class NspaceAmbiguity(s(n), a(n))
as the class of languages accepted by s(n) space bounded nonde-
terministic machines for which the number of paths from the start
configuration to any configuration is at most a(n). They show

1Very recently in the paper by Garvin et al. (2011), we improve this result
to show that ReachFewL actually collapses to ReachUL.

646 Pavan, Tewari & Vinodchandran cc 21 (2012)

that NspaceAmbiguity(s(n), a(n)) ⊆ Uspace(s(n) log a(n)) (hence
NspaceAmbiguity(log n,O(1)) ⊆ UL). Our method can be used to
show that NspaceAmbiguity(s(n), a(n)) ⊆ Uspace(s(n) + log a(n)),
thus substantially improving their upper bound.

Even though our techniques do not lead to a new upper bound
on FewL, we show a new upper bound for LFew (LFew is the count-
ing version of FewL and is analogous to the class Few (Cai &
Hemachandra 1990) in the polynomial time setting). We show
that LFew ⊆ ULFewL. This puts LFew in the second level of FewL
hierarchy.

Complexity of min-uniqueness. Our second consideration is
the notion of min-uniqueness, which is a central notion in the study
of unambiguity in the log-space setting. Min-uniqueness was first
used by Wigderson (1994) to show that NL ⊆ ⊕L/poly. For a
directed graph G and two nodes s and t, G is called st-min-unique
if the minimum length s to t path is unique (if it exists). G is
min-unique with respect to s, if it is sv- min-unique for all ver-
tices v. While st- min-uniqueness was sufficient for Wigderson’s
result, Reinhardt and Allender used the stronger version of min-
uniqueness to show that NL ⊆ UL/poly. In particular, they essen-
tially showed that a log-space algorithm that transforms a directed
graph into a min-unique graph with respect to the start vertex can
be used to design an unambiguous algorithm for reachability. This
technique was subsequently used by Bourke et al. (2009) to show
that reachability for planar directed graphs is in UL. These results
strongly indicate that understanding min-uniqueness is crucial to
resolving the NL versus UL problem.

Our second set of results is aimed at understanding min-unique-
ness from a complexity-theoretic point of view. First, we observe
that min-uniqueness is necessary to show that NL = UL: if NL =
UL, then there is a UL algorithm that gives a reachability pre-
serving mapping from any directed graph to another graph that is
min-unique with respect to the start vertex. It is an easy obser-
vation that Reinhardt and Allender’s technique will work even if
the algorithm that makes a directed graph min-unique is only UL
computable. Thus, min-uniqueness is necessary and sufficient for
showing NL = UL.

cc 21 (2012) On the power of unambiguity in log-space 647

Graph reachability problems and log-space computations are
fundamentally related. While reachability in directed graphs char-
acterizes NL, the break-through result of Reingold (2008) implies
that reachability in undirected graphs captures L. We ask the fol-
lowing question: Can we investigate the notion of min-uniqueness
in the context of complexity classes? We introduce a log-space
function class UOptL[log n] toward this goal.

OptL is the function class defined by Àlvarez & Jenner (1993)
as the log-space analog of OptP, defined by Krentel (1988). OptL
is the class of functions whose values are the maximum over all
the outputs of an NL-transducer. Àlvarez and Jenner showed that
this class captures the complexity of some natural optimization
problems in the log-space setting.

Consider OptL[log n], the restriction of OptL where the function
values are bounded by a polynomial. Àlvarez & Jenner (1993) con-
sidered this restriction and showed that OptL[log n] = FLNL[log n].
Tantau (2003) showed that “given a directed graph G and two
nodes s and t, computing the length of the shortest path from s to
t” is complete for OptL[log n].

Here we define a new unambiguous function class UOptL[log n]
(unambiguous OptL: the minimum is output on a unique compu-
tation path), and show that NL = UL is equivalent to the question
whether OptL[log n] = UOptL[log n].

SPL, the ‘gap’ version of UL, is an interesting log-space class
first studied by Allender et al. (1999b). The authors showed that
the ‘matching problem’ is contained in a nonuniform version of
SPL. They also show that SPL is powerful enough to contain FewL.
We show that UOptL[log n] ⊆ FLSPL[log n]. Thus. any language
that is reducible to UOptL[log n] is in the complexity class SPL.
This contrasts with the equivalence OptL[log n] = FLNL[log n]. We
also show that the class LogFew reduces to UOptL[log n] (refer to
the next section for the definition of LogFew).

Finally, we also observe that UOptL[log n] is contained in
FLpromiseUL. A very interesting open question is to show that FewL
reduces to UOptL[log n].

Figure 1.1 depicts the relations among various unambiguous
and ‘few’ classes that were known before and the new relations

648 Pavan, Tewari & Vinodchandran cc 21 (2012)

(a) (b)

Figure 1.1: a Relations known before. b New relations

that we establish in this paper. Definitions of these complexity
classes are given in subsequent sections.

Unambiguous hierarchies. Since it is not known whether UL is
closed under complement, it is interesting to investigate ULH; the
unambiguous log-space hierarchy over UL. We first consider the
hierarchy over UOptL[log n] and the show that the UOptL[log n]
hierarchy collapses: UOptL[log n]UOptL[log n] ≤ UOptL[log n]. Since
UL ≤ UOptL[log n] (with relativization) it follows from this col-
lapse result and the result that UOptL[log n] ⊆ FLpromiseUL, in fact
ULH ⊆ LpromiseUL.

Three pages are sufficient for NL. Finally, we consider the
reachability problem for directed graphs embedded on 3 pages and
show that it is complete for NL. This is in contrast to reachability
for graphs on 2 pages, which is log-space equivalent to reachability
in grid graphs and hence is in UL by the result of Bourke et al.
(2009). Thus, in order to show that NL = UL, it is sufficient to
extend the results of Bourke et al. (2009) to graphs on 3 pages. It
is also interesting to note that reachability for graphs on 1 page is
equivalent to reachability in trees and is complete for L.

We use a combination of existing techniques for proving our
results.

cc 21 (2012) On the power of unambiguity in log-space 649

2. Log-space complexity classes

We assume familiarity with the basics of complexity theory and in
particular the log-space bounded complexity class NL. It is well
known that checking for reachability in general directed graphs is
NL-complete. We call a nondeterministic log-space machine an NL
machine. For an NL machine M , let accM(x) and rejM(x) denote
the number of accepting computations and the number of rejecting
computations, respectively. Denote gapM(x) = accM(x)− rejM(x).

We are interested in various restrictions of NL machines with
few accepting paths. In the literature (for instance Allender et al.
1999b; Àlvarez & Jenner 1993; Buntrock et al. 1992, 1991), various
versions of unambiguity and fewness have been studied. We first
define them all here.

Definition 2.1 (Unambiguous machines). A nondeterministic
log-space machine M is

• reach-unambiguous if for any input and for any configuration
c, there is at most one path from the start configuration to
c. (The prefix ‘reach’ in the term indicates that the property
should hold for all configurations reachable from the start con-
figuration.)

• unambiguous if for any input there is at most one accepting
path.

• weakly unambiguous if for any input and any accepting config-
uration c there is at most one path from the start configuration
to c.

Definition 2.2 (Unambiguous classes). • ReachUL—class of
languages that are decided by reach-unambiguous machines
with at most one accepting path on any input.

• UL—class of languages that are decided by unambiguous
machines.

• FewUL—class of languages that are decided by weakly unam-
biguous machines.

650 Pavan, Tewari & Vinodchandran cc 21 (2012)

• LogFew—class of languages L for which there exists a weakly
unambiguous machine M and a log-space computable predicate
R such that x ∈ L if and only if R(x, accM(x)) is true.

We could define a ‘reach’ version of FewUL. But that coincides
with ReachUL as shown by Buntrock et al. (1991). The follow-
ing containments are easy: ReachUL ⊆ UL ⊆ FewUL ⊆ LogFew.
It is also shown by Buntrock et al. (1991) that FewUL is Ld(UL)
(log-space disjunctive truth-table closure of UL).

By relaxing the unambiguity condition to a polynomial bound
on the number of paths, we get analogous ‘few’ classes.

We are interested in graphs with a bound on the number of
paths. We use the following notation due to Buntrock et al. (1993)
to quantify ambiguity in a graph.

Definition 2.3. For a directed acyclic graph G and a node s,
we say G is k-ambiguous with respect to s, if for any node v, the
number of paths from s to v is bounded by k.

Definition 2.4 (Few machines). A nondeterministic log-space
machine M is a

• reach-few machine if there is a polynomial p so that on any
input x the configuration graph of M on x is p(|x|)-ambiguous
with respect to the start configuration.

• few machine if there is a polynomial p so that on any input x
there are at most p(|x|) accepting paths.

Definition 2.5 (Few classes). • ReachFewL—class of languages
that are decided by reach-few machines.

• ReachLFew—class of languages L for which there exists a reach-
few machine M and a log-space computable predicate R such
that x ∈ L if and only if R(x, accM(x)) is true.

• FewL—class of languages that are decided by few machines.

cc 21 (2012) On the power of unambiguity in log-space 651

• LFew—class of languages L for which there exists a few machine
M and a log-space computable predicate R such that x ∈ L if
and only if R(x, accM(x)) is true.

As mentioned earlier, ReachFewL is the same class as
NspaceAmbiguity(log n, nO(1)) defined by Buntrock et al. (1993).
Buntrock et al. (1991) observe that ReachFewL ⊆ LogDCFL. This
is because a depth first search of a reach-few machine can be imple-
mented in LogDCFL.

The following containments follow from the definitions:
ReachFewL ⊆ FewL ⊆ LFew. It is also clear that all the above-
defined classes are contained in LFew and it is shown by Allender
et al. (1999b) that LFew ⊆ NL. Thus, all these classes are contained
in NL. We also consider the class SPL–the ‘gap’ version of UL. A
language L is in SPL if there exists an NL-machine M so that on any
input x, gapM(x) ∈ {0, 1} and x ∈ L if and only if gapM(x) = 1.
SPL is contained in ⊕L (in fact all ‘mod’ classes) and it is big
enough to contain LFew (Allender et al. 1999b). Allender et al.
(1999b) also showed that a nonuniform version of SPL contains the
matching problem. We use the facts that LUL∩coUL = UL ∩ coUL
and FULUL∩coUL ⊆ FUL in our paper. The proof of these uses stan-
dard techniques, refer to Thierauf & Wagner (2010) for a proof of
the former equivalence and the latter equivalence can be shown
similarly.

We will use metric reductions for functional reducibility. A
function f is log-space metric reducible to function g, if there
are log-space computable functions h1 and h2 so that f(x) =
h1(x, g(h2(x))).

3. Reachability in graphs with few paths

In this section, we show new upper bounds on the space needed
by an unambiguous machine for reachability problems over graphs
with a polynomial number of paths. Our main technical tool is the
following theorem due to Reinhardt and Allender. First, we give
the definition of min-uniqueness.

Definition 3.1. Let G = (V,E) be a directed graph. For a pair
of vertices s and t, we say G is st-min-unique if, provided there is

652 Pavan, Tewari & Vinodchandran cc 21 (2012)

a path from s to t in G, the minimum length path from s to t is
unique. G is called min-unique with respect to the vertex s, if for
all vertices v, G is sv- min-unique. G is called min-unique if it is
min-unique with respect to all the nodes.

The following theorem by Reinhardt & Allender (2000) states
that the reachability problem can be solved unambiguously for
classes of graphs that are min-unique with respect to the start ver-
tex. Moreover, we can also check whether a graph is min-unique
unambiguously.

Theorem 3.2 (Reinhardt & Allender 2000). There is an unam-
biguous nondeterministic log-space machine M that given a
directed graph G and two vertices s and t as input, does the fol-
lowing:

(i) If G is not min-unique with respect to s, then M outputs
‘not min-unique’ on a unique path.

(ii) If G is min-unique with respect to s, then M accepts on
a unique path if there is a directed path from s to t, and
rejects on a unique path if there are no paths from s to t.

We can also define the notion of min-uniqueness for weighted
graphs. But this is equivalent to the above definition for our pur-
poses if the weights are positive and polynomially bounded as we
can replace an edge with weight k, with a path of length k. In fact,
we will some times use this definition for weighted graphs without
explicitly mentioning it. Thus, for showing that NL = UL it is
sufficient to come up with a positive and polynomially bounded
weight function that is UL-computable and makes a directed graph
min-unique with respect to the start vertex. For graphs with a
polynomial number of paths, we can use known hashing techniques
to make the graph min-unique. In particular, we will use the fol-
lowing well-known scheme based on primes for our proofs.

Lemma 3.3 (Fredman et al. 1984). For every constant c there is a
constant c′ such that for every set S of n-bit integers with |S| ≤ nc

the following holds: There is a c′ log n-bit prime number p so that
for any x �= y ∈ S we have x �≡ y (mod p).

cc 21 (2012) On the power of unambiguity in log-space 653

All our upper bounds in this section are based on the following
theorem.

Theorem 3.4. For any polynomial q(n), there is a nondetermin-
istic log-space bounded Turing machine M so that, for any reach-
ability instance 〈G, s, t〉, if G is q(n)-ambiguous with respect to s,
then M will output the number of paths from s to t on a unique
path (all other paths reject).

Proof. First, we show that the reachability question in a q(n)-
ambiguous graph can be decided in an unambiguous manner. We
do this by making such graphs min-unique with respect to s and
applying Theorem 3.2.

Theorem 3.5. For any polynomial q(n), there is a nondetermin-
istic log-space bounded Turing machine M so that, for any reach-
ability instance 〈G, s, t〉, if G is q(n)-ambiguous with respect to s,
then M will accept on a unique path if there is a path from s to
t. If there are no s to t paths, M will reject on a unique path. All
other paths will output ‘?’.

Proof. Let 〈G, s, t〉 be an instance of reachability. Consider the
edges of G in the lexicographical order. For the ith edge, give a
weight 2i. This is a very good weight function that assigns every
path with unique weight. The problem is that it is not polynomial-
ly bounded. We will give a polynomial number of weight functions
that are log-space computable and polynomially bounded so that
for one of them G will be min-unique with respect to s. Since by
Theorem 3.2 it is possible to check whether a given weight function
makes the graph min-unique using a UL ∩ coUL computation, we
can go through each weight function sequentially. Let pj be the jth
prime number. Then the jth weight function (for 1 ≤ j ≤ q′(n) for
an appropriate polynomial q′ dictated by Lemma 3.3) is wj(ei) = 2i

(mod pj). It follows from Lemma 3.3 that under some wj all paths
from s to t will have different weights. Hence, the graph is min-
unique under this weight function. �

(Proof of Theorem 3.4 cont.) Let G be the class of weighted graphs
which are q(n)-ambiguous with respect to a fixed vertex s, such

654 Pavan, Tewari & Vinodchandran cc 21 (2012)

that every path starting at s has a distinct weight. Let A be the
‘promise language’ consisting of tuples (G, s, t, i), given the prom-
ise that G ∈ G such that there exists a path of length i from s to
t. In particular, such a graph G is min-unique. Note that A is in
promiseUL,2 that is, there exists an NL machine that has zero or
one accepting path on every input that satisfies the promise. Also
note that, given a q(n)-ambiguous graph G, with respect to one of
the weight functions defined in Theorem 3.5, G is in G.

In the above proof, a ‘good’ weight function actually does more
than making the graph min-unique: it makes weights of every path
distinct. With this stronger property, we can count the number of
paths by making queries of the form “is there a path of length i
from s to t” to the language A, for all i ≤ N and by counting the
number of positive answers (where N is the maximum weight pos-
sible and is bounded by a polynomial). It is important to observe
that whenever we make a query to A, the query does satisfy the
necessary promise.

But among polynomially many weight functions, we have to
reject those that do not give distinct weights to paths from s to t.
Theorem 3.2 can only be used to reject weight functions that do
not make the graph min-unique. It is possible that some weight
function makes the graph min-unique with respect to s but the
graph may still have two paths from s to t of the same weight. We
use the unambiguous machine for deciding reachability in order to
check this more strict condition.

Let G′ denote the standard layered graph of G: G′ will have n
layers. For a vertex u of G, there will be copy ui in the ith layer of
G′. There is an edge from ui in the ith layer to vi+1 in the (i+1)th
layer if (u, v) is an edge in G. Notice that no new paths are added
in this layered graph. The following claim is straightforward to
see.

Claim 3.6. If G is k-ambiguous, then G′ is also k-ambiguous.
Moreover, there is an s to t path of length i in G if and only
if there is an s1 to ti path in G′.

2We define promiseUL later in Definition 4.9.

cc 21 (2012) On the power of unambiguity in log-space 655

Hence, deciding reachability in G′ can also be done unambigu-
ously and checking whether G has an s to t path of weight exactly
i can be done by reachability from s1 to ti in G′.

In order to check whether w is a ‘bad’ weight function, we need
to check whether there are two paths from s to t of the same weight.
We can use the following equivalence for checking this condition.
α and β are integer values bounded by a polynomial.

w is bad ⇐⇒
∃α∃(e = uv)∃β [∃ a path of length β from s to u]∧

[∃ a path of weight α − w(e) − β from v to t]∧
[∃ a path of length α from s to t in G − {e}]

Note that the total number of possible values of α, β and e are
bounded by polynomials in n. Thus, we can decide whether a
weight function w is ‘bad’ or not by making polynomially many
reachability queries (that is for each choice of α, β and e). Once
we get a good weight function w, we can again use reachabili-
ty queries to compute the number of distinct paths from s to t
using a deterministic log-space machine. Now using the fact that
LUL∩coUL = UL∩coUL (Thierauf & Wagner 2010), we get the desired
result. This proves the theorem. �

Theorem 3.7. Let L ∈ ReachFewL be accepted by a reach-few
machine M . Then the #L function accM(x) is computable in
FLUL∩coUL.

Proof. By definition, the configuration graph of a machine
accepting a ReachFewL language is q(n)-ambiguous for some fixed
polynomial q. �

Corollary 3.8. ReachFewL ⊆ ReachLFew ⊆ UL ∩ coUL

Our method can be used to show that NspaceAmbiguity(s(n),
a(n)) ⊆ Uspace(s(n) + log a(n)). This substantially improves
the earlier known upper bound by Buntrock et al. (1993) that
NspaceAmbiguity(s(n), a(n)) ⊆ Uspace(s(n) log a(n)).

656 Pavan, Tewari & Vinodchandran cc 21 (2012)

Theorem 3.9. For a space bound s(n) ≥ log n and ambiguity
parameter a(n) computable in space s(n) so that a(n) = 2O(s(n)),
NspaceAmbiguity(s(n), a(n)) ⊆ Uspace(s(n) + log a(n)).

Theorem 3.10. Let L ∈ FewL be accepted by a few-machine M .
Then the #L function accM(x) is computable in FULFewL.

Proof. For an input x, let G denote the configuration graph of
M(x) and let cs be the start configuration and ct be the unique
accepting configuration. Let p be the polynomial bounding the
number of paths from cs to ct. First we will present an FLFewL

computation that outputs a graph H that is p(n)-ambiguous with
respect to cs which preserves the number of paths from cs to ct.
Combining this reduction with the unambiguous machine from
Theorem 3.4 we will get the required upper bound.

We say a configuration c is useful if it is in some cs to ct path
and c is useless if it is not useful. In the reduced graph H, we
will remove all the useless nodes from G, and the edges incident
on them. Clearly, all the cs-to-ct paths in G will be preserved in
H. Moreover, H will be p(n)-ambiguous.

We will design a FewL language for detecting whether a config-
uration is useful or not. For a configuration c ∈ G, consider the
following graph Gc. Take two copies of G: G1 and G2. In G1,
delete all the outgoing edges from c. In G2, delete all the incoming
edges to c. Now add a directed edge from the copy of c in G1 to
the copy of c in G2 to get a single graph H. The following claim
is easy to verify.

Claim 3.11. c is useless if and only if there is a path from cs to
ct in G′

x. Moreover, if c is useful, then the number of paths from
cs to ct is at most p(n).

Thus, the following language

L′ = {(x, c)| there is a path from cs to ct in Hx,c}
is in FewL. The log-space machine, for each configuration c, checks
whether c is useful or not by querying L′ and delete it from G if
it is useless. The output graph G′ will not have any useless nodes
and hence will be p(n)-ambiguous. �

cc 21 (2012) On the power of unambiguity in log-space 657

As a corollary, we get the following new upper bound on the
complexity class LFew. Earlier it was known to be in NL ∩ SPL by
Allender et al. (1999b).

Corollary 3.12. LFew ⊆ ULFewL.

Similar ideas together with the fact that planar reachability is
in UL ∩ coUL (Bourke et al. 2009) also gives the following upper
bound on counting the number of paths in planar directed acyclic
graphs with a polynomial bound on the number of paths. This
improves the upper bound of UAuxPDA for this problem given by
Limaye et al. (2010).

Theorem 3.13. For any polynomial p, there is an unambiguous
machine M that given a planar directed acyclic graph G and two
nodes s and t as input, (a) outputs the number of s to t paths if
the number of such paths are bounded by p(n) (b) outputs “more
than p(n) paths” if there are more than p(n) s to t paths.

Proof. Consider the edge weight functions defined in
Theorem 3.5. With respect to each weight function, we can check
whether the number of s to t paths is bounded by p(n) in an unam-
biguous manner by considering two cases: (i) if none of the weight
functions are good, which can be checked unambiguously, then
clearly there are more than p(n) number of paths, (ii) if a weight
function is good, then we can in fact count the number of paths
from s to t and see if it is greater than p(n) by an unambiguous
algorithm that makes reachability queries (in UL∩ coUL for planar
graphs). Since FULUL∩coUL is in FUL, the theorem follows.

�

4. Complexity of min-uniqueness

Let f be a polynomially bounded, positive-valued, edge weight
function (that is a function that takes an edge as input and out-
puts an integer which we call the weight of the edge). Then by an
abuse of notation, for any directed graph G, we shall denote f(G)
to be the weighted directed graph obtained by taking every edge e
in G and replacing it with the weighted edge having weight f(e).

658 Pavan, Tewari & Vinodchandran cc 21 (2012)

Theorem 3.2 states that min-uniqueness is sufficient for show-
ing NL = UL. Next we prove that if NL = UL, then there is a
UL-computable weight function that makes any directed acyclic
graph min-unique with respect to the start vertex. Thus, min-
uniqueness is necessary and sufficient for showing NL = UL.

Theorem 4.1. NL = UL if and only if there is a polynomially
bounded UL-computable weight function f so that for any directed
acyclic graphs G, f(G) is min-unique with respect to s.

Proof. The reverse direction follows from the above theorem
due to Reinhardt and Allender. For the other direction, the idea
is to compute a spanning tree of G rooted at s using reachabil-
ity queries. Since NL is closed under complement, under the
assumption that NL = UL, reachability is in UL (since UL = coUL
under the above assumption). Thus, the following language A =
{(G, s, v, k) | there is a path from s to v of length ≤ k} is in UL.

The tree can be described as follows. We say that a vertex v is
in level k if the minimum length path from s to v is of length k.
A directed edge (u, v) is in the tree if for some k (1) v is in level
k (2) u is the lexicographically first vertex in level k − 1 so that
(u, v) is an edge.

It is clear that this is indeed a well-defined tree and deciding
whether an edge e = (u, v) is in this tree is in LA ⊆ UL.

Now for each edge in the tree, give a weight 1. For the rest of
the edges, give a weight n2. It is clear that the shortest path from
a vertex with respect to this weight function is min-unique with
respect to s and it is computable using a UL-transducer. �

Àlvarez & Jenner (1993) define OptL as the log-space analog of
OptP, which was defined by Krentel (1988). They show that OptL
captures the complexity of some natural optimization problems in
the log-space setting (e.g. computing lexicographically maximum
path of length at most n from s to t in a directed graph). They
also consider OptL[log n] where the function values are bounded
by a polynomial (hence has O(log n) bit representation). Here we
revisit the class OptL and study it in relation to the notion of
min-uniqueness.

cc 21 (2012) On the power of unambiguity in log-space 659

Definition 4.2. An NL-transducer is a nondeterministic log-
space bounded Turing machine with a one-way output tape in
addition to its read-only input tape and read/write work-tapes.
We will assume that an NL-transducer will not repeat any con-
figuration during its computation. Hence, its configuration graph
contains no cycles and all computation paths will halt with accept-
ing or rejecting state after polynomially many steps. Let M be
such an NL-transducer. An output on a computation path of M
is valid if it halts in an accepting state. For any input x, optM(x)
is the minimum value over all valid outputs of M on x. If all the
paths reject, then optM(x) = ∞. Further, M is called min-unique
if for all x either M(x) rejects on all paths or M(x) outputs the
minimum value on a unique path.

Definition 4.3. A function f is in OptL if there exists a
NL-transducer M so that for any x, f(x) = optM(x). A func-
tion f is in UOptL if there is a min-unique nondeterministic trans-
ducer M so that for any x, f(x) = optM(x). Define OptL[log n]
and UOptL[log n] as the restriction of OptL and UOptL where the
output of the transducers are bounded by O(log n) bits.

Remark 4.4. We can also define the class OptL[log n] (similarly
UOptL[log n]) in terms of a function that gives the maximum value
over all valid outputs of M on x, instead of the minimum value.
It is easy to see that the two classes (corresponding to maximum
and minimum) of functions we thus obtain are equivalent via a
log-space reduction by subtracting the value of the f(x) from a
sufficiently large polynomial whose value is greater than the max-
imum possible output value of f . For the sake of convenience, we
use both the notions in this paper.

We next observe that if we restrict the output to be of O(log n)
bits, the classes OptL and UOptL coincide if and only if NL = UL.

We will need the following proposition shown by Àlvarez &
Jenner (1993). FLNL[log n] denotes the subclass of FLNL where the
output length is bounded by O(log n).

660 Pavan, Tewari & Vinodchandran cc 21 (2012)

Proposition 4.5 (Àlvarez & Jenner 1993).
OptL[log n] = FLNL[log n].

Theorem 4.6. OptL[log n] = UOptL[log n] if and only if NL = UL.

Proof. NL = UL ⇒ OptL[log n] = UOptL[log n]: Since NL is
closed under complement, if NL = UL then NL = UL∩coUL. Hence
OptL[log n] = FLNL[log n] = FLUL∩coUL[log n]. For a function f ∈
OptL, let M be the FL machine that makes queries to a language
L ∈ UL ∩ coUL and computes f . Let N be the unambiguous
machine that decided L. The min-unique transducer M ′ will sim-
ulate M , and whenever a query y is made to L, it will simulate N
on y and continue only on the unique path where it has an answer.
In the end, M ′ will output the value computed by M on a unique
path.

OptL[log n] = UOptL[log n] ⇒ NL = UL: Let L ∈ NL. Since NL
is closed under complement, there is a nondeterministic machine
M that on input x accepts on some path and outputs ‘?’ on all
other paths if x ∈ L, and rejects on some paths and outputs ‘?’ on
all other paths if x �∈ L. We will show that L ∈ coUL. Consider
the NL-transducer which on input x simulates M(x) and outputs 1
if M accepts and outputs 0 if M rejects and outputs a large value
on paths with ‘?’. Let N be a min-unique machine that computes
this OptL function. Thus, if x �∈ L then N(x) has a unique path
on which it outputs 0 (and there may be paths on which it outputs
1). If x ∈ L, then there is no path on which it outputs 0. Now
consider the machine N ′ that simulates N , and if N outputs 0,
then it accepts. For all other values, N ′ rejects. Clearly, this is an
unambiguous machine that decides L. �

As UOptL[log n] ⊆ OptL[log n], UOptL[log n] is in FLNL[log n].
Here we show that UOptL[log n] can be computed using a SPL ora-
cle. Thus, if NL reduces to UOptL[log n], then NL ⊆ SPL.

Theorem 4.7. UOptL[log n] ⊆ FLSPL[log n].

Proof. Let f ∈ UOptL[log n] and let M be the min-unique
NL-transducer that witnesses that f ∈ UOptL[log n] and let p be

cc 21 (2012) On the power of unambiguity in log-space 661

the polynomial bounding the value of f . Consider the following
language L:

L = {(x, i) | f(x) = i and i ≤ p(|x|)}.

We will show that L ∈ SPL. Then, in order to compute f , a
log-space machine will ask polynomially many queries (x, i) for
1 ≤ i ≤ p(n).

Consider the following machine N : on input x and i ≤ p(n), it
simulates M on input x and accepts if and only if M halts with
an output at most i. Let g(x, i) be the number of accepting paths
of N on input (x, i). Notice that for i < f(x), g(x, i) = 0, for
i = f(x) then g(x, i) = 1, and for i > f(x), g(x, i) ≥ 1.

Now consider the GapL function h(x, i) = g(x, i)
∏i−1

j=1(1 −
g(x, j)) [to know more about closure properties of GapL functions
see the paper by Allender & Ogihara (1994)]. It follows that
h(x, i) = 1 exactly when f(x) = i. For the rest of i, h(x, i) = 0.
Thus L ∈ SPL. �

An interesting question is whether FewL reduces to UOptL. We
are not able to show this, but we show that the class LogFew
reduces to UOptL.

Theorem 4.8. LogFew ≤ UOptL[log n] (under metric reductions).

Proof. In this proof, we define the class UOptL[log n] as a max-
imization class (see Remark 4.4). Let L be a language in LogFew.
Let M be a weakly unambiguous machine that decides L. Con-
sider the NL-transducer N that on input x computes the number
of accepting paths of M(x): N(x) guesses an integer l so that
1 ≤ l ≤ p(n) (where p is the polynomial bounding the number
of accepting configurations) and then guesses l distinct accepting
paths to l accepting configurations, in a lexicographically increas-
ing order, and accepts and outputs l if all of them accept. Clearly,
N outputs accM(x) on exactly one computation path and all other
paths that accept will have output less than accM(x). �

Definition 4.9 (Promise classes). • A promise language is a
tuple (Iy, In), where Iy and In are disjoint subsets of {0, 1}∗

(collectively known as the promise instances).

662 Pavan, Tewari & Vinodchandran cc 21 (2012)

• A promise language (Iy, In) is said to be in promiseUL if there
is an NL machine M , such that M has a unique accepting path
for instances in Iy, and no accepting paths for instances in In,
but could have any number of accepting paths for all other
instances.

• A language A is said to be consistent with a promise language
(Iy, In), if x ∈ Iy ⇒ x ∈ A and x ∈ In ⇒ x /∈ A.

• f is said to be in FLpromiseUL if there exists a promise language
(Iy, In) in promiseUL and a log-space transducer M such that
for every language A consistent with (Iy, In), f(x) = MA(x) for
all x ∈ {0, 1}∗.

We next show that a function in UOptL[log n] is also contained
in FLpromiseUL.

Theorem 4.10. UOptL[log n] ⊆ FLpromiseUL.

Proof. In this proof, we define the class UOptL[log n] as a max-
imization class (see Remark 4.4). Let f be a UOptL[log n] func-
tion computed by a UOptL[log n] machine. We will first define a
promiseUL problem.

The instances of the problem are 〈M,x, k〉, where M is a non-
deterministic log-space bounded transducer, k is an integer and x
is an input to M . The promise language (Iy, In) of ‘Yes’ and ‘No’
instances is defined as follows.

Iy = {〈M,x, k〉|M is a UOptL[log n] machine and optM(x) = k} ,

In = {〈M,x, k〉|M is a UOptL[log n] machine and optM(x) < k} .

Now an NL machine on input 〈M,x, k〉 simulates M(x) and
accepts if the output is k and rejects otherwise.

On Iy instances, it accepts on a unique path. In instances, it
rejects on all paths.

Now consider a UOptL[log n] function computed by a machine
M . An FL machine asks queries 〈M,x, k〉 starting from the largest
possible k and comes down until it gets a yes answer at which point
it outputs that k. The FL machine is only asking queries in the
promised region. �

cc 21 (2012) On the power of unambiguity in log-space 663

5. Unambiguous hierarchies

Since UL is not known to be closed under complement, it is inter-
esting to study the complexity class hierarchy over UL, which can
be defined in natural way: ULH1 = UL and ULH(i+1) = ULULHi .
Then ULH =

⋃
i ULHi. We show that ULH ⊆ LpromiseUL. For show-

ing this we in fact first show that the hierarchy over UOptL[log n]
collapses. We then show that UOptL[log n] ⊆ FLpromiseUL.

We assume RST-relativizations when dealing with nondeter-
ministic log-space oracle classes. When the machine enters the
query state, it behaves deterministically until the entire query is
written. One important consequence of this is that, since the num-
ber of configurations of a log-space machine is polynomial, the total
number of queries that such a machine can make on any input is
polynomially bounded. Moreover, the set of all potential queries
that can be asked by a nondeterministic machine on any specific
input can be computed by a deterministic log-space machine.

Theorem 5.1. UOptL[log n] hierarchy collapses. That is,
UOptL[log n]UOptL[log n] ≤ UOptL[log n] under metric reductions.

Proof. We use an enhanced census technique, similar to the
ones that are used to prove collapses of hierarchies over log-space
classes (Allender et al. 1999a; Hemachandra 1989; Ogihara 1995;
Schoning & Wagner 1988). But since we are dealing with func-
tion classes, we need to be a bit more careful. Also, in this
proof we define the class UOptL[log n] as a maximization class (see
Remark 4.4).

Let f be a UOptL[log n] function computed by an oracle
machine M making oracle calls to a UOptL[log n] function g.
Let N be a UOptL[log n] machine computing g. We will show
that f reduces to a UOptL[log n] function h. An important
consideration (which makes the proof a bit more complicated) is
that f and g could be partial and on the inputs where the value is
not defined, the corresponding machines reject on all paths (and
hence do not have the unambiguous behavior).

Consider the computation of M(x). Let Qx = {q1, . . . , qnc} be
all the potential queries of M(x) to the function g. Let Dx = {q |

664 Pavan, Tewari & Vinodchandran cc 21 (2012)

q ∈ Qx and g(q) is defined}. Let Sx =
∑

q∈Dx
g(x). That is, Sx is

the sum of all the values of the function g on queries on which g is
defined. This value is polynomially bounded.

Consider the function h, which has two components, defined
as h(x) = 〈Sx, f(x)〉 (obtained by concatenating Sx and f(x)).
Clearly given x and h(x), we can decode f(x) in log-space and
hence f ≤ h. We will show that h(x) is a UOptL[log n] function.

Consider the following nondeterministic transducer Mh that
operates in two phases, on input x. In the first phase, on input
x, Mh tries to compute the sum Sx. Toward this Mh initializes a
sum S = 0 and guesses a subset A ⊆ Qx of potential queries and
simulates N on this subset: that is, Mh generates the potential
queries q ∈ Qx one by one, for each of q, it guesses 0 or 1. If it
guessed 0 (meaning g is not defined), it goes to the next query. If
the guess is 1, then it guesses a computation path ρ of N on q. If
the path rejects, Mh rejects. Otherwise it updates S = S + ρN(x)
(that is, it adds the value computed by N(q) on this path ρ to S).
We claim that after the first phase, Mh will have computed Sx on
a unique path, and all other paths the value computed will be less
than Sx. Mh will output this sum S as the first component of the
function. Since the highest value Sx is output on a unique path,
for the second phase we will ignore the computation on any path
that is a continuation of the paths that compute a value S < Sx.

In the second phase, Mh will start simulating M(x). For each
query q asked by M , Mh will simulate the answer as follows (if
g(q) is defined, then Mh could have just guessed a path of N and
continued; but a problem arises on queries for which the oracle
function is undefined and hence the computation does not have an
unambiguous behavior; we need to take care of this). Mh again
guesses a subset A of queries as in phase one and for each of
the queries in A, it also guesses a computation path ρ, of N and
computes the sum S of values for each of the queries. It continues
the computation only on the unique path where S = Sx. For this
path if q is not in A, then Mh treats the answer to the query as
“not defined” and continues. If q is in A, then Mh treats the value
computed by N(q) on the path ρ as answer to the oracle query q.

cc 21 (2012) On the power of unambiguity in log-space 665

Finally, Mh outputs 〈Sx, v〉 where v is the value that N computes
on a path. �

Corollary 5.2. ULH ⊆ LpromiseUL.

6. Three pages are sufficient for NL

We show that the reachability problem for directed graphs embed-
ded on 3 pages is complete for NL. It can be shown that the
reachability problem for graphs on 2 pages is equivalent to reach-
ability in grid graphs and hence is in UL by the result of Bourke
et al. (2009). Thus, in order to show that NL = UL it is sufficient
to extend the techniques of Bourke et al. (2009) to graphs on 3
pages. It is also interesting to note that graphs embedded on 1
page are outer-planar and hence reachability for directed graphs
on 1 page is complete for L as shown by Allender et al. (2009).

Definition 6.1. 3Page is the class of all graphs G that can be
embedded on 3 pages as follows: all vertices of G lie along the
spine and the edges lie on exactly one of the three pages without
intersection. Moreover, all edges are directed from top to bottom.
3PageReach is the language consisting of tuples (G, s, t, f), such
that G ∈ 3Page, s and t are two vertices in G and there exists a
path from s to t in G, and f is an embedding of G on 3 pages (that
is, f defines the ordering of the vertices along the the spine and in
which page an edge lies on).

Theorem 6.2. 3PageReach is complete for NL.

Proof. To show that 3PageReach is in NL, we need to verify
that, given an instance (G, s, t, f), whether f is an embedding of
G on 3 pages. Note that, for any two edges (u1, v1) and (u2, v2) in
G that lies in the same page, the edges cross each other if and only
if either (i) u2 lies in between u1 and v1, or (ii) v2 lies in between
u1 and v1, in the ordering of the vertices along the spine. This
condition can be checked in NL and therefore whether f is indeed
an embedding of G on 3 pages or not can also be verified in NL.

666 Pavan, Tewari & Vinodchandran cc 21 (2012)

(a) (b)

Figure 6.1: a Graph G. b The corresponding graph H. The dashed
edges of H are on page 3

To show that 3PageReach is hard for NL, assume that we are
given a topologically sorted DAG G, with (u1, u2, . . . , un) being
the topological ordering of the vertices of G. We want to decide if
there is a path in G from u1 to un. We define an ordering on the
edges of G, say E(G). Given two edges e1 and e2, (i) if the head
of e1 precedes the head of e2, then e1 precedes e2 in the ordering,
(ii) if the head of e1 is the same as the head of e2, then e1 precedes
e2 in the ordering if tail of e1 precedes tail of e2. It is easy to see
that E(G) can be constructed in log-space given G and in any path
from s to t, if edge e1 precedes e2, then e1 precedes e2 in E(G) as
well. Let m be the number edges in G.

For any integer k, let [k] denote the set of integers {1, . . . , k}.
We create 2m copies of each vertex in G and let vj

i denote the
jth copy of the vertex ui, for i ∈ [n] and j ∈ [2m]. We order the
vertices along the spine of H from top to bottom as follows:

(v1
1, v

1
2, . . . , v

1
n, v2

n, v2
n−1, . . . , v

2
1, v

3
1, v

3
2, . . . , v

3
n, . . . , v2m

n , . . . , v2m
1).

Next we need to connect all the 2m vertices corresponding to
each ui from the top to bottom. We use the first 2 pages to do that.
Put the edge (vj

i , v
j+1
i) in H, for each i ∈ [n] and each j ∈ [2m−1],

using page 1 when j is odd and page 2 when j is even. For the
kth edge in E(G), say ek = (uk1 , uk2), put the edge (v2k−1

k1
, v2k

k2
) in

H, using page 3. It is clear that this can be done without any two
edges crossing each other. We give an example of this reduction in
Figure 6.1. The claim is that there exists a path from u1 to un in
G if and only if there exists a path from v1

1 to v2m
n in H.

Suppose there exists a path p from u1 to un in G. Let p =
(ei1 , . . . eil). For each j ∈ [l], corresponding to eij there exists an
edge in page 3 of H by construction, say fj. Also by construction
and the ordering E(G), the tail of fj lies above the head of fj+1

cc 21 (2012) On the power of unambiguity in log-space 667

along the spine of H. Further, since the head of eij+1
is the same

as the tail of eij for j ∈ [l − 1], there exists a path from the tail of
fj to the head of fj+1 (using edges from pages 1 and 2). Thus, we
get a path from v1

1 to v2m
n in H.

To see the other direction, let ρ be a path from v1
1 to v2m

n in H.
Let ρ3 = (α1, α2, . . . , αr) be the sequence of edges of ρ that lie on
page 3. Note that each of the edges in ρ3 has a unique pre-image
in G by the property of the reduction. This defines a sequence of
edges p′ in G by taking the respective pre-images of the edges in
ρ3. Now the sub-path of ρ from v1

1 to the head of α1 uses only
edges from pages 1 and 2 and thus by construction the head of α1

is a vertex vl1
1 (for some l1 ∈ [2m]). A similar argument establishes

that the tail of αr is a vertex vl2
n (for some l2 ∈ [2m]) and also that

the tail of αi and the head of αi+1 are the copies of the same vertex
in G, for i ∈ [r − 1]. Therefore, p′ is a path from u1 to un in G.

�

Acknowledgements

We thank Eric Allender for an interesting e-mail discussion and
for providing valuable suggestions that improved the presenta-
tion of the paper. We thank V. Arvind for interesting email
exchanges on the topic of this paper. The last author deeply thanks
Meena Mahajan and Thanh Minh Hoang for discussions on a
related topic during a recent Dagstuhl workshop. We thank Samir
Datta and Raghav Kulkarni for discussions that lead to a weaker
version of Theorem 6.2 (namely, reachability for 4-page graphs is
complete for NL). We would also like to acknowledge the support of
the NSF grants CCF-0830730, CCF-0916525, CCF-0830479, CCF-
0916797. We also thank the anonymous reviewers for their helpful
comments and suggestions, and in particular for pointing to the
paper by Tantau (2003) on log-space optimization classes.

References

E. Allender & M. Ogihara (1994). Relationships among PL, #L,
and the determinant. In Structure in Complexity Theory Conference,
1994., Proceedings of the Ninth Annual, 267–278.

668 Pavan, Tewari & Vinodchandran cc 21 (2012)

Eric Allender (1986). The complexity of sparse sets in P. In Proc.
of the conference on Structure in complexity theory, 1–11. ISBN 0-387-
16486-3.

Eric Allender (2006). NL-printable sets and nondeterministic
Kolmogorov complexity. Theor. Comput. Sci. 355(2), 127–138.

Eric Allender, David A. Mix Barrington, Tanmoy Chakr-

aborty, Samir Datta & Sambuddha Roy (2009). Planar and Grid
Graph Reachability Problems. Theory Comput. Syst. 45(4), 675–723.

Eric Allender, Robert Beals & Mitsunori Ogihara (1999a).
The complexity of matrix rank and feasible systems of lin-
ear equations. Comput. Complex. 8, 99–126. ISSN 1016-3328.
http://portal.acm.org/citation.cfm?id=329550.329552.

Eric Allender, Klaus Reinhardt & Shiyu Zhou (1999b). Iso-
lation, Matching, and Counting: Uniform and Nonuniform Upper
Bounds. Journal of Computer and System Sciences 59, 164–181.

Carme Àlvarez & Birgit Jenner (1993). A Very Hard Log-space
Counting Class. Theoretical Computer Science 107, 3–30.

Chris Bourke, Raghunath Tewari & N. V. Vinodchandran

(2009). Directed Planar Reachability Is in Unambiguous Log-Space.
ACM Trans. Comput. Theory 1(1), 1–17. ISSN 1942-3454.

Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf &
Christoph Meinel (1992). Structure and Importance of Logspace-
MOD Class. Mathematical Systems Theory 25(3), 223–237.

Gerhard Buntrock, Lane A. Hemachandra & Dirk Siefkes

(1993). Using Inductive Counting to Simulate Nondeterministic Com-
putation. Information and Computation 102(1), 102–117.

Gerhard Buntrock, Birgit Jenner, Klaus-Jörn Lange &
Peter Rossmanith (1991). Unambiguity and fewness for logarithmic
space. In Proceedings of the 8th International Conference on Funda-
mentals of Computation Theory (FCT’91), Volume 529 Lecture Notes
in Computer Science, 168–179. Springer-Verlag.

Jin-Yi Cai & Lane Hemachandra (1990). On the power of parity
polynomial time. Mathematical Systems Theory.

http://portal.acm.org/citation.cfm?id=329550.329552

cc 21 (2012) On the power of unambiguity in log-space 669

Michael L. Fredman, János Komlós & Endre Szemerédi (1984).
Storing a Sparse Table with O(1) Worst Case Access Time. J. ACM
31(3), 538–544.

Brady Garvin, Derrick Stolee, Raghunath Tewari &
N. V. Vinodchandran (2011). ReachFewL=ReachUL. In 17th Annual
International Computing and Combinatorics Conference.

L. Hemachandra (1989). The strong exponential hierarchy collapses.
J. of Computer and System Sciences 39(3), 299–322.

Mark Krentel (1988). The complexity of optimization problems.
J. of Computer and System Sciences 36, 490–509.

Jan Kynčl & Tomáš Vyskočil (2010). Logspace Reduction of
Directed Reachability for Bounded Genus Graphs to the Planar Case.
ACM Trans. Comput. Theory 1(3), 1–11. ISSN 1942-3454.

Nutan Limaye, Meena Mahajan & Prajakta Nimbhorkar

(2010). Longest Paths in Planar DAGs in Unambiguous Log-Space. Chi-
cago Journal of Theoretical Computer Science 2010(8).

M. Ogihara (1995). Equivalence of NCk and ACk−1 Closures
of NP and Other Classes. Information and Computation 120(1),
55–58. ISSN 0890-5401. http://www.sciencedirect.com/science/article/
B6WGK-45NJJWP-43/2/4fad4e8bff85772430de575c68b164aa.

Omer Reingold (2008). Undirected connectivity in log-space. J. ACM
55(4), 1–24. ISSN 0004-5411.

Klaus Reinhardt & Eric Allender (2000). Making nondetermin-
ism unambiguous. SIAM Journal of Computing 29, 1118–1131. An ear-
lier version appeared in FOCS 1997, pp. 244–253.

Uwe Schöning & Klaus Wagner (1988). Collapsing oracle hierar-
chies, census functions and logarithmically many queries. In STACS
88, Robert Cori & Martin Wirsing, editors, volume 294 of Lec-
ture Notes in Computer Science, 91–97. Springer Berlin / Heidelberg.
doi:10.1007/BFb0035835.

Till Tantau (2003). Logspace Optimisation Problems and their
Approximation Properties. Technical Report TR03-077, Electronic Col-
loquium on Computational Complexity.

http://www.sciencedirect.com/science/article/B6WGK-45NJJWP-43/2/4fad4e8bff85772430de575c68b164aa
http://www.sciencedirect.com/science/article/B6WGK-45NJJWP-43/2/4fad4e8bff85772430de575c68b164aa
http://dx.doi.org/10.1007/BFb0035835

670 Pavan, Tewari & Vinodchandran cc 21 (2012)

Thomas Thierauf & Fabian Wagner (2010). The Isomor-
phism Problem for Planar 3-Connected Graphs Is in Unambigu-
ous Logspace. Theor. Comp. Sys. 47, 655–673. ISSN 1432-4350.
doi:10.1007/s00224-009-9188-4.

Thomas Thierauf & Fabin Wagner (2009). Reachability in K3,3-free
Graphs and K5-free Graphs is in Unambiguous Log-Space. In 17th
International Conference on Foundations of Computation Theory
(FCT), Lecture Notes in Computer Science 5699, 323–334. Springer-
Verlag.

Leslie Valiant (1976). The Relative Complexity of Checking and
Evaluating. Information Processing Letters 5, 20–23.

Avi Wigderson (1994). NL/poly ⊆ ⊕L/poly. In Proceedings of the 9th
Structures in Complexity conference, 59–62.

Manuscript received 5 October 2010

A. Pavan

Department of Computer Science,
Iowa State University,
Ames, IA 50011, USA.
pavan@cs.iastate.edu

Raghunath Tewari

Department of Computer Science
and Engineering,

Indian Institute of Technology
Kanpur, Kanpur, India.
rtewari@cse.iitk.ac.in

N. V. Vinodchandran

Department of Computer Science
and Engineering,

University of Nebraska–Lincoln,
Lincoln, NE 68588, USA.
vinod@cse.unl.edu

http://dx.doi.org/10.1007/s00224-009-9188-4

	On the power of unambiguity in log-space
	Introduction
	Log-space complexity classes
	Reachability in graphs with few paths
	Complexity of min-uniqueness
	Unambiguous hierarchies
	Three pages are sufficient for NL
	Acknowledgements
	References

