
On Forward Checking for Non binaryConstraint Satisfaction �Christian BessièreyLIRMM-CNRS, 161 rue Ada, 34392 Montpellier, Francebessiere@lirmm.frPedro MeseguerIIIA-CSIC, Campus UAB, 08193 Bellaterra, Spainpedro@iiia.csic.esEugene C. FreuderCork Constraint Computation Centre,University College Cork, Cork, Irelande.freuder@4c.ucc.ieJavier LarrosaDep. LSI, UPC, Jordi Girona Salgado, 1-3,08034 Barcelona, Spainlarrosa@lsi.upc.esAbstractSolving non binary constraint satisfaction problems, a crucial challenge today, can betackled in two di�erent ways: translating the non binary problem into an equivalent binaryone, or extending binary search algorithms to solve directly the original problem. The latteroption raises some issues when we want to extend de�nitions written for the binary case.This paper focuses on the well-known forward checking algorithm, and shows that it can begeneralized to several non binary versions, all �tting its binary de�nition. The classical nonbinary version, proposed by Van Hentenryck, is only one of these generalizations.1 IntroductionIn the last two decades, most of the research done in constraint satisfaction assumed that con-straint problems can be exclusively formulated in terms of binary constraints. While manyacademic problems (n-queens, zebra, etc.) �t this condition, many real problems include nonbinary constraints. It is well known the equivalence between binary and non binary formulations[15]. Theoretically, this equivalence solves the issue of algorithms for non binary problems. Inpractice, however, it presents serious drawbacks concerning spatial and temporal requirements,which often make it inapplicable. The translation process generates new variables, which may�This work was supported by an Integrated Action �nanced by the Generalitat de Catalunya and by theSpanish CICYT project TAP99-1086-C03 (P. Meseguer and J. Larrosa), by an �action incitative CNRS/NSF�under Grant no. 0690 (C. Bessière), and by the National Science Foundation under Grant No. IRI-9504316 (E.C.Freuder). E.C. Freuder contributed to this work while at the University of New Hampshire Computer ScienceDepartment; he is currently supported by a Science Foundation Ireland Principal Investigator Award.yMember of the Coconut group (http://www.lirmm.fr/�bessiere/COCONUT/).1

have very large domains, causing extra memory requirements for algorithms. In some cases,solving the binary formulation can be very ine�cient [1]. In any case, this forced binarizationgenerates unnatural formulations, which cause extra di�culties for constraint solver interfaceswith human users.An alternative approach consists in extending binary algorithms to non binary versions, ableto solve non binary problems in their original formulation. This approach eliminates the transla-tion process and its drawbacks, but it raises other issues, among which how a binary algorithm isgeneralized is a central one. For some algorithms, such as chronological backtracking (BT) [7] ormaintaining arc consistency (MAC) [16], this extension presents no conceptual di�culty: theirbinary de�nitions allow only one possible non binary generalization. For other algorithms, suchas forward checking (FC) [8], several generalizations are possible.In this paper, we study how the popular FC algorithm can be extended to consider nonbinary constraints. We present di�erent generalizations, all collapsing to the standard versionin the binary case. Our intention is mainly conceptual, trying to draw a clear picture of thedi�erent options for non binary FC. We also provide some experimental results to initially assessthe relative performance of the studied algorithms.This paper is organized as follows. In Section 2, we present basic concepts used in the rest ofthe paper. In Section 3, we show the di�erent ways in which binary FC can be generalized intonon binary versions. In Section 4, we provide properties and analysis of these generalizations,relating them to the algorithm FC+ [1], an algorithm specially designed to deal with the hiddenbinary formulation of non binary problems. In Section 5, we provide experimental results ofthe proposed algorithms. Finally, Section 6 contains some conclusions and directions for furtherresearch.2 PreliminariesA �nite constraint network CN is de�ned as a set of n variables X = fx1; : : : ; xng, a currentdomain D(xi) of possible values for each variable xi, and a set C of constraints among variables.A constraint cj on the ordered set of variables var(cj) = (xj1 ; : : : ; xjr(j)) speci�es the relationrel(cj) of the allowed combinations of values for the variables in var(cj). rel(cj) is a subsetof D0(xj1) � � � � � D0(xjr(j)), where D0(xi) is the initial domain of xi. (The de�nition of aconstraint does not depend on the current domains.) An element of D0(xj1) � � � � �D0(xjr(j))is called a tuple on var(cj). An element of D(xj1) � � � � � D(xjr(j)) is called a valid tuple onvar(cj). We introduce the notions of initial and current domains to explicitly di�erentiate theinitial network, CN 0, from a network CN , obtained at a given node of a tree search after someoperations (instantiations and/or �ltering). The tuple IP on the ordered set of past variables Prepresents the sequence of instantiations performed to reach a given node. The set X n P of thefuture variables is denoted by F . The tuple IP on P is said to be consistent i� for all c 2 C suchthat var(c) � P , IP satis�es c.A value a for variable x is consistent with a constraint c i� x =2 var(c), or there exists avalid tuple in rel(c) with value a for x. A variable x is consistent with a constraint c i� D(x)is not empty and all its values are consistent with c. A constraint c is arc consistent i� for allx 2 var(c), x is consistent with c. A set of constraints C is arc consistent i� all its constraintsare arc consistent [11, 12].Let C = fc1; : : : ; ckg be a set of constraints. We will denote by AC(C) the procedure whichenforces arc consistency on the set C.1 Given an arbitrary ordering of constraints c1; : : : ; ck,we say that AC is applied on each constraint in one pass (denoted by AC(fc1g); : : : ; AC(fckg))1Abusing notation, we will also denote by AC(C) the set of values removed by the procedure AC(C).

when AC is executed once on each individual constraint following the constraint ordering. Let �be a tuple on the set of variables S. The projection of � on a subset S0 of S, denoted by �[S0], isthe restriction of � to the variables of S0. The projection c[S0] of the constraint c on the subsetS0 of var(c) is a constraint de�ned by var(c[S0]) = S0, and rel(c[S0]) = ft[S0]=t 2 rel(c)g. Thejoin of � and a relation rel(c) on var(c), denoted by � 1 rel(c), is the set ft=t is a tuple onS [var(c), and t[var(c)] 2 rel(c), and t[S] = �g.3 From Binary to Non binary FCFC (from now on, bFC) was de�ned in [8] for binary constraint networks. They described bFCas an algorithm pursuing this condition at each node,there is no future unit having any of its labels inconsistent with any past unit-labelpairswhere unit stands for variable, and label for value. Values in future domains are removed toachieve this condition, and if a future domain becomes empty, bFC backtracks. This conditionis equivalent to require that the set Cbp;f , consisting of constraints connecting one past and onefuture variable, is arc consistent. To do this, it is enough performing arc consistency on the setCbc;f of constraints involving the current and a future variable, each time a new current variableis assigned (Proposition 2, Section 4.1). In addition, arc consistency on this set can be achievedby computing arc consistency on each constraint in one single pass (Corollary 1, Section 4.1).With this strategy, after assigning the current variable we have,AC(Cbp;f) = AC(Cbc;f) = AC(fc1g); : : : ; AC(fcqg) (�)where ci 2 Cbc;f and jCbc;f j = q. So, bFC works as follows,bFC: After assigning the current variable, apply arc consistency on each constraint of Cbc;f in onepass. If success (i.e., no empty domain detected), continue with a new variable, otherwisebacktrack.How can the FC strategy be extended for non binary constraints? It seems reasonable toachieve arc consistency (the same level of consistency as bFC) on a set of constraints involvingpast and future variables. In the binary case, there is only one option for such a set: constraintsconnecting one past variable (the current variable) and one future variable. In the non binarycase, there are di�erent alternatives. We analyze the following ones,21. Constraints involving at least one past variable and at least one future variable;2. Constraints or constraint projections involving at least one past variable and exactly onefuture variable;3. Constraints involving at least one past variable and exactly one future variable.2It is worth noting that our analysis is complete. The remaining alternative, constraint or constraint projectionsinvolving at least one past variable and at least one future variable is redundant with option 1, since arc consistencyon a constraint implies arc consistency on all its projections.

Considering option (1), we de�ne the set Cnp;f of the constraints involving at least one pastvariable and at least one future variable, and the set Cnc;f consisting of constraints involving thecurrent variable and at least one future variable (no restriction on the number of past variables).The big di�erence with the binary case is that, in these sets, we have to deal with partiallyinstantiated constraints, with more than one uninstantiated variable. In this situation, theequivalences of (�) no longer hold for the non binary case. After assigning the current variablewe have: AC(Cnp;f) 6= AC(Cnc;f) 6= AC(fc1g); : : : ; AC(fcqg) (�)where ci 2 Cnc;f and jCnc;f j = q. Then, we have di�erent alternatives, depending on the set ofconstraints considered (Cnp;f or Cnc;f) and whether arc consistency is achieved on the whole set,or applied on each constraint one by one. They are the following,nFC5: After assigning the current variable, make the set Cnp;f arc consistent. If success, continuewith a new variable, otherwise backtrack.nFC4: After assigning the current variable, apply arc consistency on each constraint of Cnp;f inone pass. If success, continue with a new variable, otherwise backtrack.nFC3: After assigning the current variable, make the set Cnc;f arc consistent. If success, continuewith a new variable, otherwise backtrack.nFC2: After assigning the current variable, apply arc consistency on each constraint of Cnc;f inone pass. If success, continue with a new variable, otherwise backtrack.Regarding options (2) and (3), we de�ne the set Cnp;1 of the constraints involving at least onepast variable and exactly one future variable, and the set Cnc;1 of the constraints involving thecurrent variable and exactly one future variable (no restriction on the number of past variables).Analogously, we de�ne the set CP np;1 of the constraint projections3 involving at least one pastvariable and exactly one future variable, and the set CP nc;1 of the constraint projections involv-ing the current variable and exactly one future variable (no restriction on the number of pastvariables). Both cases are concerned with the following generalization of (�) (proved in Section4.1), stating that after assigning the current variable we have,AC(Cnp;1) = AC(Cnc;1) = AC(fc1g); : : : ; AC(fcqg) (
)where ci 2 Cnc;1 and jCnc;1j = q. As a result, only one alternative exists for each of the options (2)and (3), and they are respectively the following,nFC1: ([10]) After assigning the current variable, apply arc consistency on each constraint ofCnc;1 [CP nc;1 in one pass. If success, continue with a new variable, otherwise backtrack.nFC0: ([19]) After assigning the current variable, apply arc consistency on each constraint ofCnc;1 in one pass. If success, continue with a new variable, otherwise backtrack.To illustrate the di�erences between the six presented algorithms, a simple example is pre-sented in Figure 1. It is composed of 6 variables fx; y; z; u; v; wg, sharing the same domainfa; b; cg, and subject to three ternary constraints, c1(x; y; z), c2(u; v; w) and c3(x; y; w). Afterthe assignment (x; a), none of the constraints have two instantiated variables. Therefore, nFC0does no �ltering. nFC1 applies arc consistency on the constraint projections of c1 and c3 on thesubsets fx; yg, fx; zg and fx;wg, removing c from D(y) and b from D(w). nFC2 applies arc3A constraint projection is computed from the constraint de�nition which involves initial domains.

X = fx; y; z; u; v; wg, every domain is fa; b; cgc1 c2 c3x y z u v w x y wa a a a a a a a aa b c a b b a b ca c b c c cAssign Alg. Action(x; a) nFC0 nonenFC1 AC(fc1[x; y]g); AC(fc1[x; z]g); AC(fc3[x; y]g); AC(fc3[x;w]g)nFC2 AC(fc1g); AC(fc3g)nFC3 AC(fc1; c3g)nFC4 AC(fc1g); AC(fc3g)nFC5 AC(fc1; c3g)(u; a) nFC0 nonenFC1 AC(fc2[u; v]g); AC(fc2[u;w]g)nFC2 AC(fc2g)nFC3 AC(fc2g)nFC4 AC(fc1g); AC(fc2g); AC(fc3g)nFC5 AC(fc1; c2; c3g)(x; a) nFC0 nFC1 nFC2 nFC3 nFC4 nFC5D(x) a a a a a aD(y) a; b; c a; b a; b a; b a; b a; bD(z) a; b; c a; b; c a; b; c a; c a; b; c a; cD(u) a; b; c a; b; c a; b; c a; b; c a; b; c a; b; cD(v) a; b; c a; b; c a; b; c a; b; c a; b; c a; b; cD(w) a; b; c a; c a; c a; c a; c a; c(u; a) nFC0 nFC1 nFC2 nFC3 nFC4 nFC5D(x) a a a a a aD(y) a; b; c a; b a; b a; b a aD(z) a; b; c a; b; c a; b; c a; c a; c aD(u) a a a a a aD(v) a; b; c a; b a a a aD(w) a; b; c a a a a aFigure 1: A simple problem and the �ltering caused by the six algorithms, after the assignments (x; a)and (u; a).consistency on c1 and later on c3, pruning the same values as nFC1. Notice that if we considerthese constraints in a di�erent order, the �ltering will be di�erent. nFC3 achieves arc consistencyon the subset fc1; c3g, which causes the �ltering of nFC2 plus the removal of b from D(z). Giventhat x is the �rst instantiated variable, nFC4 applies arc consistency on the same constraints asnFC2, and it causes the same �ltering. For the same reason, nFC5 performs the same �lteringas nFC3.After the assignment (u; a), none of the constraints have two instantiated variables. So, nFC0does no �ltering. nFC1 applies arc consistency on the constraint projections of c1 on the subsetsfu; vg and fu;wg, removing c from D(v) and c from D(w). nFC2 applies arc consistency onc2, and it removes b and c from D(v) and c from D(w). nFC3 achieves arc consistency on thesubset fc2g, thus causing the same �ltering as nFC2 (di�erences in D(z) come from the previousassignment). nFC4 applies arc consistency on the constraints c1, c2 and c3, removing b fromD(y) and D(z), b and c from D(v) and c from D(w). nFC5 achieves arc consistency on thewhole constraint set. It removes b from D(y), c from D(z), b and c from D(v) and c from D(w).

4 Formal Results on nFC4.1 PropertiesIn the next results, we prove the equivalences of (
) used in Section 3.Proposition 1 Let c be a constraint such that all its variables but one are instantiated. If cis made arc consistent, it remains arc consistent after achieving arc consistency on any otherproblem constraint.Proof. Let xj be the only uninstantiated variable of c, and let ch be another constraint involvingxj. If ch is made arc consistent after c, this may cause further �ltering in D(xj) but c will remainarc consistent since all remaining values in D(xj) are already consistent with c. 2Corollary 1 Let C be a set of constraints such that all their variables but one are instantiated.Achieving arc consistency on C is equivalent to make each of its constraints arc consistent in onepass.Proposition 2 Let P be the ordered set of past variables. Let Cp;1 be the set of constraintsinvolving at least one past variable and exactly one future variable. If each time a variable of Pwas assigned, the set Cc;1 of constraints involving that variable and one future variable was madearc consistent, then the set Cp;1 is arc consistent.Proof. Let us assume that Cc;1 has been made arc consistent after assigning each variable inP . If Cp;1 is not arc consistent, this means that there is at least one of its constraints ch whichis not arc consistent. Let xk be the last assigned variable in var(ch). ch has been made arcconsistent after xk assignment. And because of Proposition 1 ch remained arc consistent. Thisis in contradiction with the assumption. Therefore, Cp;1 is arc consistent. 2Regarding the correctness of the proposed algorithms, we have to show that they are sound(they �nd only solutions), complete (�nd all solutions) and terminate. All algorithms follow adepth-�rst strategy with chronological backtracking, so it is clear that all terminate. Then, wehave to show soundness and completeness.Proposition 3 Any nFCi (i:{0,. . . ,5}) is correct.Proof. Soundness. We prove that, after achieving the corresponding arc consistency condition,the tuple IP of past variables reached by any algorithm is consistent. When this tuple includes allvariables, we have a solution. The sets of constraints to be made arc consistent by the proposedalgorithms all include the set Cp;1 of nFC0. By Proposition 1, we know that once those constraintsare made arc consistent, they remain arc consistent after processing any other constraint. So,proving this result for nFC0 makes it valid for any nFCi algorithm (i:{0,. . . ,5}). If IP of nFC0is inconsistent then at least one constraint c involving only variables in P is inconsistent. Let xiand xj be the two last assigned variables in var(c), in this order. After assigning xi, c was inCp;1 which was made arc consistent (Proposition 2). Assigning xj a value inconsistent with c isin contradiction with the assumption that Cp;1 was arc consistent. So, IP is consistent.Completeness. We show completeness for nFC5, proofs for other algorithms are similar.Given a variable ordering, it is clear that nFC5 visits all successors of nodes compatible withsuch ordering where the set Cnp;f can be made arc consistent. Let us suppose that there is a nodesolution, IP , where all variables are past. If xn is the last variable to be instantiated, the parentnode IPnfxng is a node where Cnp;f can be made arc consistent. By induction, nFC5 visits thenode solution IP . 2

At a given node �, we de�ne the �ltering caused by an algorithm nFCi, �(nFCi; �), as theset of pairs (x; a) where a is a value removed from the future domain D(x) by the correspondingarc consistency condition.Proposition 4 At any node �, these relations hold,1. �(nFC0; �) � �(nFC1; �) � �(nFC2; �),2. �(nFC2; �) � �(nFC3; �) � �(nFC5; �),3. �(nFC2; �) � �(nFC4; �) � �(nFC5; �).Proof. Regarding nFC0 and nFC1, the relation is a direct consequence of Cnc;1 � Cnc;1 [CP nc;1.Regarding nFC1 and nFC2, constraint projections are semantically included in Cnc;f . RegardingnFC2 and nFC3, applying arc consistency on each constraint of Cnc;f in one pass is part of theprocess of achieving arc consistency on the set Cnc;f . Regarding nFC3 and nFC5, Cnc;f � Cnp;f .Regarding nFC2 and nFC4, Cnc;f � Cnp;f . Regarding nFC4 and nFC5, applying arc consistencyon each constraint of Cnp;f in one pass is part of the process of achieving arc consistency on theset Cnp;f . 2Regarding nFC3 and nFC4, their �ltering is incomparable as can be seen in the example ofFigure 1. (After assigning (x; a), nFC3 �ltering is stronger than nFC4 �ltering; the oppositeoccurs after assigning (u; a).) A direct consequence of Proposition 4 involves the set of nodesvisited by each algorithm. De�ning nodes(nFCi) as the set of nodes visited by nFCi until �ndinga solution,Corollary 2 Given a constraint network with a �xed variable and value ordering, the followingrelations hold,1. nodes(nFC2) � nodes(nFC1) � nodes(nFC0),2. nodes(nFC5) � nodes(nFC3) � nodes(nFC2),3. nodes(nFC5) � nodes(nFC4) � nodes(nFC2).4.2 Complexity AnalysisIn this subsection, we give upper bounds to the number of constraint checks the di�erent nFCalgorithms perform at one node. First, let us give an upper bound to the number of checksneeded to make a future variable xj consistent with a given constraint ch. For each value b inD(xj), we have to �nd a subtuple � in �x2var(ch)nfxjgD(x) such that � extended to (xj ; b) isallowed by ch. So, the number of checks needed to make xj consistent with ch is in O(m � jV j),where V = �x2var(ch)nfxjgD(x), and m denotes the maximal size of a domain.In nFC0, a constraint ch is made arc consistent at a given node i� var(ch) contains only onefuture variable xj . Thus, enforcing arc consistency on ch is in O(m) since jV j = 1. (Domainsof past variables are singletons.) Therefore, the number of checks performed by nFC0 at onenode is in O(jCnc;1j �m). For the same reason the number of checks performed by nFC1 at onenode is in O(jCnc;1 [CP nc;1j �m), assuming that the constraint projections have been built in apreprocessing phase.Let rh be the arity of a constraint ch. In nFC2 and nFC4, arc consistency is performed onch when it has at most rh � 1 future variables. Hence, jV j is bounded above by mrh�2 for agiven constraint ch, and a given future variable xj in var(ch). Thus, making xj consistent withch is bounded above by m �mrh�2, and enforcing arc consistency on ch is in O((rh � 1) �mrh�1)since there are at most rh � 1 variables to make arc consistent with ch. If a is the maximalarity of the constraints in C, at any node in the tree, the number of checks performed is inO(jCnc;f j � (a � 1) �ma�1) for nFC2, and O(jCnp;f j � (a � 1) �ma�1) for nFC4. We can point outthat this is an upper bound exponential in the arity of the constraints.

At a given node in the search, nFC3 (resp. nFC5) deals with the same set of constraints asnFC2 (resp. nFC4). The di�erence comes from the propagations nFC3 (resp. nFC5) performsin order to reach an arc consistent state on Cnc;f (resp. Cnp;f), whereas nFC2 (resp. nFC4)performs one pass arc consistency on them. Thus, if we suppose that arc consistency is achievedby an optimal algorithm, such as GAC4 [12] or GAC2001 [2], the upper bound in the number ofconstraint checks performed by nFC3 (resp. nFC5) at a given node is the same as nFC2 (resp.nFC4) bound. (With an AC3-like algorithm [11], nFC3 and nFC5 have a greater upper bound.)4.3 Limited nFCThere is a gap in complexity between the number of checks performed at a node by nFC0, andthe number of checks performed by nFC2, nFC3, nFC4, or nFC5. Indeed, for a given constraintch, it depends on m for the former, and on mrh�1 for the others. We can imagine cases in whichthe arity of ch is so large that the e�ort needed by nFC2, nFC3, nFC4, or nFC5, to make ch arcconsistent has a dramatic e�ect on their e�ciency. The following de�nition proposes a class ofalgorithms with bounded e�ort at each node of the search tree.Let k be a positive integer. k-nFCi (i:{2,. . . ,5}) is the search algorithm which performs thesame type of processing as nFCi at each node, but only on the constraints processed by nFCithat involve at most k future variables.The number of checks performed by k-nFCi at a given node of the search tree is in O(eik �k � mk), where eik is the maximum number of constraints with at most than k uninstantiatedvariables, and processed by nFCi, at a given node.Proposition 5 At any node �, we have �(k-nFCi; �) � �(nFCi; �) (i:{2,. . . ,5}).Proof. The relation is a direct consequence of the fact that at each node, k-nFCi propagates asubset of the constraints propagated by nFCi (by de�nition). 2Corollary 3 Given a constraint network with a �xed variable and value ordering, we have,nodes(nFCi) � nodes(k-nFCi).Depending on the value of k, k-nFCi can degenerate to already known algorithms:Proposition 6 For any i in {2,. . . ,5} the following relations hold,0-nFCi is equal to BT,1-nFCi is equal to nFC0,(a-1)-nFCi is equal to nFCi if a is the maximum arity over all problem constraints.This proposition points out why the classical Van Hentenryck's nFC, namely nFC0, is fre-quently subject to thrashing. It is the version that waits the most in the instantiation processbefore applying arc consistency on a given constraint. It applies it so late that it cannot detectearly incompatibilities between the instantiation and the constraint (when only a part of thevariables of the constraint are instantiated).4.4 FC+ and nFC1The hidden variable representation is a general method for converting a non binary constraintnetwork into an equivalent binary one [4, 15]. In this representation, the problem has twosets of variables: the set of the ordinary variables, those of the original non binary problem,with their original domain of values, plus a set of hidden variables, or h-variables. There is ah-variable hc for each constraint c of the original network, with rel(c) as initial domain (i.e.,

nFC3

nFC2

nFC4

nFC5

nFC0

nFC1 = FC+

Figure 2: The hierarchy of the algorithms with respect to the number of visited nodes. Twoalgorithms are connected by an edge if the set of nodes visited by the lower is a subset of the setof nodes visited by the upper.the tuples allowed by c become the values in D0(hc)). A h-variable hc is involved in a binaryconstraint with each of the ordinary variables x in var(c). Such a constraint allows the set ofpairs f(v; t)=v 2 D0(x); t 2 D0(hc); t[x] = vg.FC+ is an algorithm designed to run on the hidden representation [1]. It operates like bFCexcept that when the domain of a h-variable is pruned, FC+ removes from adjacent ordinaryvariables those values whose support has been lost. Besides, FC+ never instantiates h-variables.When all its neighboring (ordinary) variables are instantiated, the domain of a h-variable isalready reduced to one value. Its assignment is, in a way, implicit. Therefore, there is a directcorrespondence between the search space of FC+ and any nFC. The following proposition relatesFC+ to the nFC algorithms.Proposition 7 Given a constraint network CN with a �xed variable and value ordering, wehave nodes(FC+) = nodes(nFC1) if FC+ runs on the hidden representation of CN .Proof. Given that FC+ assigns the same variables as nFC1, it is enough to prove that for anyordinary future variable xj, a value b 2 D(xj) is pruned by FC+ i� it is pruned by nFC1.Let xj 2 F , such that b has been pruned from D(xj) by nFC1. From the algorithmicdescription of nFC1, this means that there exists a constraint c with xj 2 var(c) whose projectionon (P \ var(c))[fxjg does not support b. That is, b =2 IP 1 (rel(c)[(P \ var(c))[fxjg]))[xj] =(IP 1 rel(c))[(P \ var(c)) [fxjg][xj] = (IP 1 rel(c))[xj] = D(hc)[xj], if hc is the variablerepresenting c in the hidden representation. Therefore, b has no support in D(hc), and FC+ alsoprunes b.Analogously, if b is pruned from D(xj) by FC+, this means that b has lost its support insome hidden variable hc whose current domain is D(hc) = (IP 1 rel(c)). Hence, the projectionof c on (P \var(c))[fxjg, which is equal to (IP 1 rel(c))[(P \var(c))[fxjg], does not supportb. So, nFC1 also prunes b. 2Inspired by the hierarchies of algorithms presented in [9], Figure 2 presents the hierarchyresulting from Corollary 2 and Proposition 7.5 Experimental ResultsWe have performed some experiments to preliminary assess the relative performance of the pro-posed algorithms, and to con�rm the expectations drawn from the complexity analysis. In our ex-

periments, we have used both random problems and problems from the CSPLib (http://www.csplib.org).On the one hand, random problems permit to relate some characteristics of the algorithms tosome varying parameters, such as arity, connectivity or tightness. They also allow to catch thethreshold between satis�ability and inconsistency, where hard problems occur. On the otherhand, the Schur's lemma (a combinatorial mathematics problem), and the car sequencing prob-lem (a scheduling problem), both from the CSPLib, show the behaviour of the algorithms onmore structured problems, with speci�c constraint semantics.5.1 Random problemsFor random problems, we have extended the well known four-parameter binary model [17, 6]to �xed arity non binary problems as follows. A �xed arity random problem is de�ned by �veparameters ha; n;m; p1; p2i, where a is the arity of all the constraints in the network, n is thenumber of variables, m is the cardinality of their domains, p1 is the problem connectivity as theratio between existing constraints and the number of possible sets of a variables (the problemhas exactly p1 � �na� constraints), and p2 is the constraint tightness as the proportion of forbiddenvalue tuples between a constrained variables (the number of forbidden value tuples is exactlyp2 �ma). The constrained variables and their nogoods are randomly selected following a uniformdistribution. (We kept only connected problems.) We present results on ternary and quaternaryproblems because 3-ary are the simplest non binary problems, but 4-ary are the simplest oneson which we have non trivial limited versions of the nFC algorithms.4We performed experiments on the following classes of problems:(a) h3; 10; 10; 100=120 = 0:83; p2i,(b) h3; 30; 6; 75=4060 = 0:018; p2i,(c) h3; 75; 5; 120=67525 = 0:0018; p2i,(d) h4; 14; 8; 100=1001 = 10�1; p2i,(e) h4; 26; 6; 47=14950 = 10�2:5; p2i,(f) h4; 63; 4; 59=595665 = 10�4; p2i.Regarding connectivity, (a) and (d) are dense classes, while (b) and (e) are relatively sparse,and (c) and (f) very sparse classes. The cross-over point, cp2, where 50% of the instances aresatis�able, appears in (a) and (d) at low tightness, in (b) and (d) at medium tightness, and in(c) and (f) at high tightness. (b) and (e) classes were chosen to characterize a situation wherenFC0 and nFC2-nFC5 have very close performances.We solved 50 instances for each set of parameters, using nFC0, nFC1, FC+, nFC2, nFC3,nFC4, and nFC5,5 with the heuristic minimum domain sizedegree for variable selection [3], and lexi-cographic value selection. In this paper, we only report results for the values of the tightnesswhere the ratio of satis�able instances is the closest to 50%. Table 1 contains results on 3-aryproblems (classes (a), (b), (c)), and Table 2 contains results on 4-ary problems (classes (d), (e),(f)).In both Tables 1 and 2, the lines �#nodes� show the mean number of visited nodes to solveeach problem class. With no surprise, it is in agreement with Corollary 2, which establishes thatnFC0 is the algorithm visiting the most nodes while nFC5 is the one that visits the least nodes.Because of Proposition 7, nFC1 and FC+ visit the same nodes. The new information is aboutthe relation between nFC3 and nFC4, algorithms unordered by Corollary 2. On the six problemclasses, nFC4 visits less nodes than nFC3, which means that nFC4 performs more pruning thannFC3.4On 3-ary problems, 2-nFCi is equivalent to nFCi (see Proposition 6).5In nFC2 to nFC5, the algorithm used to apply one pass or �full� arc consistency on a set of constraints isbased on GAC2001, an optimal arc consistency algorithm [2].

(a) <a = 3; n = 10;m = 10; p1 = 0:83; bp2 = 208=1000> (20/50 sat)nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5#nodes 6,303 6,303 6,303 5,763 5,353 3,547 2,911#ccks 0.30M 0.84M 55.59M 0.72M 0.75M 0.83M 0.84Mcpu time 0.29 0.57 45.98 0.54 0.91 1.17 1.21(b) <a = 3; n = 30;m = 6; p1 = 0:018; bp2 = 109=216> (19/50 sat)nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5#nodes 61,650 43,455 43,455 31,826 30,003 8,505 6,447#ccks 0.96M 1.67M 19.98M 1.52M 1.46M 0.82M 0.73Mcpu time 1.39 1.45 13.94 1.39 1.73 1.37 1.29(c) <a = 3; n = 75;m = 5; p1 = 0:0018; bp2 = 76=125> (7/50 sat)nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5#nodes 9,740,904 747,587 747,587 314,330 297,382 56,163 51,116#ccks 102.69M 19.30M 140.45M 11.64M 11.07M 3.38M 3.16Mcpu time 222.70 23.73 106.44 13.41 15.91 6.99 6.59Table 1: Results on three classes of 3-ary random problems at the cross-over point. #ccks is inmillions and cpu time in seconds. (Mean of 50 instances per class.)(d) <a = 4; n = 14;m = 8; p1 = 10�1; bp2 = 1060=4096> (18/50 sat)nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5#nodes 203,582 203,440 � 178,765 160,600 106,292 86,427#ccks 7.55M 43.96M � 28.30M 29.41M 37.24M 38.06Mcpu time 15.32 90.25 >1000 50.02 68.14 101.00 107.00(e) <a = 4; n = 26;m = 6; p1 = 10�2:5; bp2 = 815=1296> (18/50 sat)nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5#nodes 1,214,116 461,999 461,999 309,301 285,301 97,990 65,668#ccks 14.92M 29.69M 418.67M 22.44M 21.74M 19.12M 17.53Mcpu time 33.38 57.19 277.84 30.32 34.97 36.34 34.41(f) <a = 4; n = 63;m = 4; p1 = 10�4; bp2 = 194=256> (20/50 sat)nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5#nodes �� 189,647 189,647 112,900 109,859 23,396 17,767#ccks �� 7.25M 30.82M 5.80M 5.72M 2.88M 2.60Mcpu time >1000 15.94 21.67 8.09 9.47 5.39 5.24Table 2: Results on three classes of 4-ary random problems at the cross-over point. #ccks is inmillions and cpu time in seconds. (Mean of 50 instances per class.)The lines �#ccks� and �cpu time� show the average computational e�ort6 (as mean numberof constraint checks and mean CPU time) required. We observe that, for problems with looseconstraints (cross-over point at low tightness �classes (a) and (d)�) the winner is nFC0, thealgorithm that performs the simplest look ahead. For these classes of problems, sophisticatedforms of look ahead do not pay-o�: the proposed algorithms nFC1 to nFC5 are 1.9 to 7 timesslower than nFC0. And the di�erence is greater on 4-ary problems where the useless look aheadis even more expensive than on 3-ary problems. FC+ on the hidden representation is orders ofmagnitude slower. For problems with the cross-over point at medium tightness �classes (b) and(e)�, no single algorithm clearly outperforms the others. nFC0, nFC2, nFC3, nFC4, and nFC56This e�ort includes the preprocessing phase for nFC1 and the conversion into the hidden representation forFC+.

(a) <a = 4; n = 14;m = 8; p1 = 10�1; bp2 = 1060=4096> (18/50 sat)2-nFC2 L/P 2-nFC3 L/P 2-nFC4 L/P 2-nFC5 L/P#nodes 179,485 1.00 163,410 1.02 109,298 1.03 88,264 1.02#ccks 22.46M 0.79 22.67M 0.77 22.84M 0.61 22.27M 0.59cpu time 38.61 0.77 52.52 0.77 61.25 0.61 61.54 0.58(c) <a = 4; n = 63;m = 4; p1 = 10�4; bp2 = 194=256> (20/50 sat)2-nFC2 L/P 2-nFC3 L/P 2-nFC4 L/P 2-nFC5 L/P#nodes 172,825 1.53 171,316 1.56 137,919 5.89 136,648 7.69#ccks 4.49M 0.77 4.46M 0.78 3.81M 1.32 3.78M 1.46cpu time 7.78 0.96 9.26 0.98 8.49 1.58 8.83 1.69Table 3: Results of the 2-nFCi limited versions on the two extreme classes of 4-ary randomproblems at the cross-over point. #ccks is in millions and cpu time in seconds. (Mean of 50instances per class.)are very close.7 nFC1, close to the others on the 3-ary class (b), is twice slower on the 4-ary class(e). The bad behaviour of FC+ is con�rmed. For problems with the cross-over point located athigh tightness �classes (c) and (f)�, the proposed algorithms nFC1 to nFC5 clearly outperformnFC0. Even FC+ performs much better than nFC0. The winner is nFC5, the algorithm whichperforms the greatest e�ort per node, and causes the highest �ltering. It is orders of magnitudefaster than nFC0.On these six classes, it seems that nFC2 is the more stable algorithm. If we average 3-ary and4-ary classes, it is second (behind nFC0) on loose constraints, third (behind nFC4 and nFC5) ontight constraints, and the winner on medium constraints. nFC1, which is among the best choiceson 3-ary constraints is not as good on the 4-ary problems. The main reason is probably thatprojecting a 3-ary constraint on all the subsets of variables creates only three binary constraintswhile projecting a 4-ary constraint creates four 3-ary constraints and six binary ones. Evenif it is a way to avoid the complexity of arc consistency, which is growing with the arity onstronger versions (nFC2 to nFC5 �see Section 4.2), these projections will become loose whenthe projected constraint is not very tight, generating almost no pruning. Consequently, thebehaviour of nFC1 is expected to decay with growing arity. Considering FC+, it has the worstperformance for loose and medium constraints, and it is the second worst (after nFC0) for tightconstraints. Any of the proposed algorithms outperforms FC+ in the six problem classes.8We can also point out some other noteworthy phenomena that are not visible in the tablesreported here. First, on the problem classes presented there, nFC0 is the only algorithm that en-countered exceptionally hard problems, located in the satis�able region of the h3; 75; 5; 0:0018; p2iand h4; 63; 4; 10�4 ; p2i classes. Second, when the heuristic minimum domain size for variableselection is used instead of minimum domain sizedegree , nFC0 becomes more frequently subject tothrashing, even on problem sizes remaining very easy for the algorithms nFC1 to nFC5.Limited versions of nFC2�nFC5Table 3 presents the results for the limited versions of the nFC2�nFC5 algorithms on the 4-aryclasses. On 4-ary constraints, the only non trivial limited version is with k = 2. We presentonly the two extreme cases (loose and tight constraints). Column L=P gives the ratio limitedversion / plain version. According to Corollary 3, the number of nodes visited by any 2-nFCi7As already mentioned, we chose to report these classes because of this particularity.8These results do not contradict some already published works showing a good behaviour of FC+ on cross-wordpuzzles. On cross-words, indeed, constraints are very tight, and they are given in extension.

is always greater than in the plain version nFCi. Not surprisingly, the di�erence is greater ontight constraints. This means that more propagations are missed by the limited version on tightconstraints. Regarding the computational e�ort (number of constraint checks and cpu time), itis signi�cantly less for limited versions on loose constraints since the number of nodes are closeto plain versions and the number of possible constraint checks on a constraint is bounded aboveby m2 instead of m3 for plain versions. For tight constraints, things are less straightforward. In2-nFC4 (resp. 2-nFC5), the great increase in number of nodes was too high to be outweighed bythe constraint checks saved at each node. Hence, nFC4 (resp. nFC5) outperforms 2-nFC4 (resp.2-nFC5) both in constraint checks and cpu time. For 2-nFC2 and 2-nFC3, however, the increasein number of nodes was small compared to plain versions. Thus, the constraint checks saved ateach node permit to outperform slightly the plain versions in cpu time.5.2 Schur's lemmaWe also performed experiments on several combinatorial mathematics problems of the CSPLib.In this section, we present results we obtained on the Schur's lemma, and on a modi�ed versionof this problem. The Schur's lemma consists in putting n balls labelled from 1 to n into 3 boxes,such that three balls labelled x, y, and z are not put in the same box if x+ y = z. We encodedthis problem as a CSP in which balls are variables, boxes are their values, and a constraintnotequal(x; y; z) is put on a triple of balls x, y, z when x + y = z. This constraint forbidsthem to take all the same value/box. As in random problems, we used GAC2001 to apply arcconsistency [2]. The greatest number of balls that can be put in 3 boxes is 23. The only nontrivial instance is the proof of optimality, i.e., proving that the problem with 24 balls and 3 boxesdoes not have solution. Results for this problem are reported at the top of Table 4. Becausethe constraint notequal is very loose, we have a pattern which is close to what we obtained onclasses (a) and (d) of random problems: weaker look ahead produces better performance.To see what happens when tightness increases, we changed slightly the de�nition of theproblem, replacing the notequal constraint by a alldiff when three balls labelled x, y, z, verifyx + y = z. Alldiff is loose, but not as loose as the notequal. With this new speci�cation,the problem with 3 boxes becomes trivial (4 is the optimal number of balls). We increasedthe number of boxes until non trivial cases occur. The optimal number of balls for 9 boxes is11. In Table 4 (bottom), we report the proof of optimality, i.e., proving that the problem with12 balls and 9 boxes does not have solution. The e�ect of having constraints slightly tighterthan in the previous case appears clearly. The look ahead performed by nFC0 is too weak.The one performed by nFC4/nFC5 is still too much. The good compromise in this case isnFC1/nFC2/nFC3, which visit the same nodes. nFC2 is the winner in cpu time since it has thesimplest behaviour among these three algorithms. We can expect that on problems with eventighter constraints, nFC4/nFC5 would have been the winners.We have to bear in mind that all these results were obtained while the constraints notequaland alldiff were made arc consistent with a generic algorithm, although there exist speci�c algo-rithms using their semantics. As we will see in the Subsection 5.3, the use of speci�c algorithmsto make arc consistent the constraints with a speci�c semantics can a�ect the results.5.3 Car sequencingTo illustrate the behaviour of the nFCs on a real problem, we choose the car sequencing problem,a scheduling problem from the CSPLib. In this problem, a number of cars are to be produced.They are not identical because di�erent options can be required as variants on the basic model.The problem consists in scheduling the cars on a assembly line so that the options can be installedin di�erent stations along the line. A station is designed to handle at most a certain proportion

Schur's lemma (x + y = z ! notequal(x; y; z), 24 balls, 3 boxes)nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5#nodes 9,840 9,840 9,840 9,816 9,816 4,860 4,404#ccks 0.19M 0.53M 2.77M 0.30M 0.30M 0.35M 0.33Mcpu time 0.33 0.90 1.87 0.54 0.69 0.99 0.95Modi�ed Schur (x+ y = z ! alldiff(x; y; z), 12 balls, 9 boxes)nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5#nodes 1,546,362 986,409 986,409 986,409 986,409 623,529 623,529#ccks 24.33M 15.53M 293.08M 8.41M 8.41M 12.41M 12.41Mcpu time 36.31 25.78 215.68 17.47 21.78 32.69 39.14Table 4: Results on the Schur's lemma and its modi�ed version. #ccks is in millions and cputime in seconds.of the cars passing along the assembly line. For instance, if a particular station, installing optionk, can only cope with at most one third of the cars passing along the line (i.e., capacity 1/3),the sequence of cars must be built so that at most 1 car in any 3 consecutive cars requires thatoption. In the data �les tested, it is assumed that there are �ve options with capacities 1/2, 2/3,1/3, 2/5, and 1/5 respectively.We encoded this problem as a CSP in which slots in the sequence are variables, cars to bebuilt are their values. For each option k installed in a station of capacity pk=qk, a constraint cof arity qk allowing only pk cars with option k among the variables in var(c) is posted on any qkconsecutive slots. A clique of inequalities ensures that a car is not assigned twice. Finally, weadded a redundant global constraint ensuring that there remain enough free slots uninstantiatedto assign the remaining cars with a given option. (For instance, if at a given node there onlyremain the 17 last slots uninstantiated, and if 5 of the remaining cars need the option installedin the station of capacity 1/5, we know that we cannot reach a solution from this node �only 4such cars can be placed.) Since we wanted to see the behaviour of the nFCs on �close to reality�conditions, we developed speci�c algorithms for the di�erent kinds of constraints needed in oursimple encoding. The binary inequalities are propagated (i.e., made arc consistent) with thetechnique described in [13]. The constraint �at most p among q consecutive cars� is propagatedwith an algorithm pruning the domains of the involved variables in one turn, avoiding the searchfor support in the Cartesian product of the domains. The redundant global constraint is alsopropagated by a speci�c algorithm. Finally, following Smith's recommendation [18], we used thelexicographic variable ordering in all the algorithms.The data �les reported in the CSPLib only contain very di�cult instances. Those for whicha solution/inconsistency is known have been solved with sophisticated algorithms tuned to dealwith the features of these problems (global sequencing constraints [14], symmetries, etc.). Hence,we decreased the sizes of these problems to obtain smaller running times.Results for two instances are reported in Table 5. (All instances tested gave similar results.)The lines �#ccks� count the number of times a call to the propagation algorithm of a constraintis performed. (The classical notion of �constraint check� no longer exists in speci�c algorithms.)We observe that propagating a constraint as soon as one of its variables is instantiated greatlypays o� since nFC0 is much slower than the others. It �nished its search in less than 1 houronly on instances on which the other algorithms needed less than 1 second. (Limited versions2-nFC2 to 2-nFC5 were almost as bad as nFC0 in cpu time.) As opposed to nFC0, performanceof nFC1 to nFC5 is in the same order of magnitude, nFC2 being the winner, followed by nFC1.This can be explained in part by the fact that all the non binary constraints9 involve consecutive9namely, the capacity constraints, and the redundant global constraint.

Number of cars: 43 (satis�able)nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5#nodes �� 4,256,089 �� 4,256,089 4,097,904 4,256,089 4,097,904#ccks �� 28.54M �� 30.64M 32.99M 30.64M 32.99Mcpu time >1h 77.02 �� 67.97 92.92 100.37 101.84Number of cars: 38 (inconsistent)nFC0 nFC1 FC+ nFC2 nFC3 nFC4 nFC5#nodes �� 6,595,664 �� 6,595,664 6,484,440 6,595,664 6,484,440#ccks �� 34.50M �� 39.28M 42.69M 39.28M 42.69Mcpu time >1h 112.70 �� 107.33 141.79 150.64 152.84Table 5: Results on the car sequencing problem. #ccks is in millions and cpu time in seconds.variables. Together with the lexicographic variable ordering, this implies that Cnp;f and Cnc;falways contain the same non binary constraints. (The only binary constraints are those of theclique of inequalities on which all nFCs collapse �see Section 3.) As a result, nFC2 (resp. nFC3)and nFC4 (resp. nFC5) explore the same search tree. The cpu time di�erence between nFC2and nFC4, or between nFC3 and nFC5, is due to the data structures handled by nFC4 andnFC5. A last thing to notice is that �full� arc consistency on Cnc;f (nFC3) or Cnp;f (nFC5) doesnot pay o� w.r.t. one pass arc consistency of nFC2 and nFC4. Regarding nFC1, despite the bignumber of constraints generated, it remains competitive. This is a very particular case where allthe projections are constraints with the same semantics as the projected one, so that the speci�cpropagation algorithm can be used. FC+ could not be run because of the huge space needed forthe domains of the hidden variables.Finally, in order to more deeply assess the e�ect of using speci�c algorithms to propagatethe constraints, we solved a (satis�able) car sequencing problem with 16 cars where we replacedthe speci�c propagation algorithms by the generic GAC2001. nFC0 becomes the winner in 18.09sec., whilst nFC2 and nFC5 need 51.60 sec. and 68.89 sec. respectively.10 This is consistentwith the results obtained on random problems. In our encoding, indeed, some arities are large,and the tightest constraint (the 5-ary capacity constraint �1/5�) is relatively loose: its tightnessis never greater than 0.4 on satis�able instances.5.4 DiscussionIn this Section, we brie�y synthesize the lessons that can be drawn from the experiments weperformed. First, we have to keep in mind that stronger look ahead pays o� only when it isoutweighed by domain pruning, i.e., by a reduction in the number of nodes. The �rst consequenceof this evidence is straightforward on random problems, for which we saw that problems withloose constraints were better solved by nFC0, while on problems with tight constraints, nFC5was the winner. On medium tightnesses, all the nFCs exhibited a similar performance. On theSchur's lemma and its modi�ed version, we found the same behaviour: nFC0 wins on the veryloose Schur's lemma while the best performance shifts to nFC2 with the slightly tighter modi�edversion.In addition to the tightness of the constraints, the arity is another parameter that a�ectsperformance. Indeed, as pointed out in Section 4.2, the cost of applying arc consistency ona constraint grows with the arity. This is illustrated by classes (b) and (e) in the randomexperiments. These classes represent the case where nFC0 and the other nFCs have the closest10Using the speci�c propagation algorithms, this instance is solved in 0.00 sec. by nFC1-nFC5, and in 0.03 bynFC0.

performance at the threshold. For 3-ary problems it is for cp2 = 109=216 � 0:5 while for 4-aryproblems it is for cp2 = 815=1296 � 0:63. We can expect that the greater the arity will be, thegreater the tightness will have to be to �nd problems where nFC0 is the worst choice.While the picture seems to be clear when arc consistency is enforced by a generic algorithm,this is much less de�nite on problems where speci�c propagation algorithms are used. Indeed, ifwe look at the results on the car sequencing problem, we did not expect such a big advantagefor nFC1-nFC5 compared to nFC0. This problem has loose constraints with large arities, whichseemed to be more in favour of nFC0. The key point is that we implemented speci�c algorithmsfor which the cost of propagation is much lower than for a generic algorithm. Thus, algorithmswith stronger look ahead bene�t from more domain reductions at reduced cost. Therefore,on problems with constraints for which speci�c propagation algorithms are available, it is notsu�cient to know the arity and the tightness of the constraints to predict the right level of lookahead. It is indeed related to the trade-o� between bene�t and cost of constraint propagation,which completely depends on the given constraint and its propagation algorithm.Concerning speci�c constraint propagation algorithms, we can notice that nFC1 has no chanceto be competitive if the semantics of the constraint is lost on its projections, preventing the useof the speci�c algorithm. The capacity constraint p=q of the car sequencing was a favorablecase since its projection on q � k variables preserves the semantics: it is the capacity constraintp=(q�k). (When p � q�k, the constraint is still a capacity constraint, but equal to the universalconstraint.) On the contrary, a constraint such as x+ y+ z = t, which has a simple propagationalgorithm based on arithmetic properties, loses its semantics when projected on subsets of thevariables.Finally, can we decide between the one pass behaviour of nFC2-nFC4 and the �full� arcconsistency behaviour of nFC3-nFC5? The answer is not obvious. Though nFC3 is slower thanits one pass equivalent �nFC2� on all our experiments, nFC4 and nFC5 are much harder toseparate.6 Summary and ConclusionWe presented several possible generalizations of the FC algorithm to non binary constraint net-works. We studied their properties, and analyzed their complexities. We also compared thesenon binary algorithms to the binary FC+ algorithm, which runs on the hidden conversion of nonbinary networks. We provided empirical results on the relative performances of these algorithms.Their performances greatly depend on the tightness and arity of the constraints. This �ts thealready known trade-o� between the bene�ts of early pruning caused by constraint propagation,and the e�ort it requires. But the use of the semantics of the constraints can also a�ect perfor-mance. When a speci�c algorithm is used to deal with a speci�c constraint, the trade-o� betweenbene�t and cost of constraint propagation has shown a slide to the advantage of versions withhigher look ahead.11 An ultimate goal could be to exhibit a criterion under which to decide whena constraint should be processed by the nFC0 principle, and when it should be propagated witha more pruningful mechanism. Such a criterion might be learned on some instances of problems,such as in [5], where variable ordering heuristics are learned by experience. The result would bea mixed algorithm, taking the best of each technique.11Existing constraint solvers often perform some form of look ahead (arc consistency or weaker) on all theconstraints (i.e., a kind of MAC algorithm).

References[1] F. Bacchus and P. van Beek. On the conversion between non-binary and binary constraintsatisfaction problems. In Proceedings AAAI'98, pages 311�318, Madison WI, 1998.[2] C. Bessière and J.C. Régin. Re�ning the basic constraint propagation algorithm. In Pro-ceedings IJCAI'01, pages 309�315, Seattle WA, 2001.[3] C. Bessière and J.C. Régin. MAC and combined heuristics: two reasons to forsake FC (andCBJ?) on hard problems. In Proceedings CP'96, pages 61�75, Cambridge MA, 1996.[4] R. Dechter. On the expressiveness of networks with hidden variables. In ProceedingsAAAI'90, pages 556�562, Boston MA, 1990.[5] S.L. Epstein and E.C. Freuder. Collaborative learning for constraint solving. In ProceedingsCP'01, pages 46�60, Paphos, Cyprus, 2001.[6] D. Frost, C. Bessière, R. Dechter, and J.C. Régin. Random uniform csp generators. URL:http://www.ics.uci.edu/�dfrost/csp/generator.html, 1996.[7] S.W. Golomb and L.D. Baumert. Backtrack programming. Journal of the ACM, 12(4):516�524, October 1965.[8] R.M. Haralick and G.L. Elliott. Increasing tree seach e�ciency for constraint satisfactionproblems. Arti�cial Intelligence, 14:263�313, 1980.[9] G. Kondrak and P. van Beek. A theoretical evaluation of selected backtracking algorithms.Arti�cial Intelligence, 89:365�387, 1997.[10] J. Larrosa and P. Meseguer. Adding constraint projections in n-ary csp. In J.C. Régin andW. Nuijtens, editors, Proceedings of the ECAI'98 workshop on non-binary constraints, pages41�48, Brighton, UK, 1998.[11] A.K. Mackworth. On reading sketch maps. In Proceedings IJCAI'77, pages 598�606, Cam-bridge MA, 1977.[12] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings ECAI'88, pages651�656, Munchen, FRG, 1988.[13] R. Mohr and G. Masini. Running e�ciently arc consistency. In G. Ferraté et al., editor,Syntactic and Structural Pattern Recognition, pages 217�231. Springer-Verlag, Berlin, 1988.[14] J.C. Régin and J.F. Puget. A �ltering algorithm for global sequencing constraints. InProceedings CP'97, pages 32�46, Linz, Austria, 1997.[15] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint satisfaction problems.In Proceedings ECAI'90, pages 550�556, Stockholm, Sweden, 1990.[16] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint satisfaction.In Proceedings PPCP'94, Seattle WA, 1994.[17] B. Smith. Phase transition and the mushy region in constraint satisfaction problems. InProceedings ECAI'94, pages 100�104, Amsterdam, The Netherlands, 1994.

[18] B. Smith. Succeed-�rst or fail-�rst: a case study in variable and value ordering. In Pro-ceedings ILOG Solver and ILOG Scheduler International Users' Conference, Paris, France,1996.[19] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, Cambridge,MA, 1989.

