Andrew Charles Breiner

Phase Transition Phenomenon


I implemented the nine algorithms discussed by Prosser in his paper on Hybrid Algorithms.  It was my job to determine if a phase transition occurred and what algorithm best solved the problem.  First I am going to define what the phase transition is and how it works.  Then I will also define the nine algorithms.  I then will tell you about other programs I wrote to help me with the data collection.  Then I will inform you of the problem I encountered.  Final I will finish up with the results and the conclusion.


What is the phase transition, and why should I care?  The phase transition occurs around a critical value.  A critical value is a value that when changed slightly has a big impact on the solution to the problem.  The variable that has this critical value is called the order parameter.  For my problem the order parameter was tightness.  Tightness refers to how many tuples are allowed or disallowed.  If we had little tightness then the problem is under constrained and easy to solve.  One the other hand if the problem is very tight and nearly all tuples are disallowed, then the problem is over-constrained and it is easy to show that it is impossible to solve.  So somewhere in the middle, problems become difficult to solve or show there is no solution.  So back to the original question, why should you care?  If you are trying to solve a problem and you know what the order parameter is and where the critical value is, then you should be able to a high degree of accuracy determine if the problem is solvable or not.


What are the nine algorithms?  The nine algorithms are Chronological Backtracking (BT), Back Jumping (BJ), Conflict-Directed Back Jumping (CBJ), Back Marking (BM), Back Marking and Back Jumping (BMJ), Back Marking and Conflict-Directed Back Jumping (BMCBJ), Forward Checking (FC), Forward Checking and Back Jumping (FCBJ), and Forward Checking and Conflict-Directed Back Jumping (FCCBJ).  Now to discuss how each of them works.  The BT is the simplest; it simple tries to assign a value to a variable from the variable's current domain.  If it is consistent with all of the past variables, it goes on to the next variable until it gets to the end.  However, if it is not consistent with a past variable, it will try to assign itself another value, but if it has no more values it will simple un-assign itself and go up one level and try to re-assign that level.  This is repeated until all variables have been assigned values or all possibilities have been tried.  BJ is similar to BT, excepted it can determine where at in the search space a variable is failing so it can jump to the point and then step back.  CBJ is an improvement on BJ.  It can also jump back to the point of conflict, but once there it can jump again to another point of conflict.  BM is used to try and reduce the number of checks needed.  If a variable's value has been checked against a large portion of the past variables, then why should we have to check it again?  This is what BM tries to do.  It keeps track of how far down we have checked and how far up we have backtracked.  BMJ is suppose to be an improvement on BM, BM can just step back.  So people thought lets incorporate BM and BJ, so we can reduce constraints checked and jumps back.  But something doesn't work right with the way Prosser displays it so it is actually worse.  Then people thought ok, let’s try it with BM and CBJ, again they got the same results with BM and BJ.  It is actually worse then BM.  Next is FC, it tries to assign a variable and it checks the future variables to see who doesn't like that assignment.  If all variables have a value after the assignment then we go onto the next variable and try it again.  However, it an assignment to a variable caused another variable to have no values left we would simple back up one level and try again.  Then people thought about FC and BJ, which is an improvement.  It just incorporates FC's label and BJ's unlabel.  The same idea is used for FC and CBJ.

I had to vary the tightness and density.  Tightness again refers to how many tuples are allowed for a constraint.  Density on the other hand refers to how many constraints there are.  So for my problem I had to hold one of them still and vary the other and then I had to do the vise versa.  So this created quite a bit of data for me to sift through and figure out.  I being as lazy as I am, I figured I could have the computer lump all the information into a handful of files and I could just look at those handfuls.  So I created a program called run.  This program calls several other programs.  It calls the program to generate the binary constraint file; it also called each of my nine algorithms, and feed them the binary constraint file.  So this solved my problem of running each of the programs, but still I have quite a bit of output.  So I created a program called gather.  This program goes through the current directory and sticks all the information for a certain algorithm into one file.  So instead of have 9*8*8 files I only have 9.

I have encountered a few problems along the way.  First off, I forgot to initialize my variables after each instance, so I was using 3000 plus megabytes on the server.  I found this error, but my program still could not read fast enough, so Dan and Corey told me to write my file to the /tmp directory and it would be faster, and it was.  I did not what to have to go though and gather up al my information so Dan told be about a c command which is the system( char temp[]) command, and what this command does it is just like typing in the command at the command line.  C sends the system command to the processor for processing and it handles it just like a command line command.

The results I have are for 10 variables and a domain size of 5, because that is all my computer can handle.  I found that the fastest algorithm is the FCCBJ, followed by FCBJ.  This is due to the fact that I only had 10 variables so, there were a lot of instances where all I had to do is step back, and so this did not take full advantage of FCCBJ’s capability.  Here are the following results FCCBJ <= FCBJ < FC < CBJ < BJ < BT, this is true for the nodes visited and constraints checked.  I had errors in my BackMarking algorithms so the results of those algorithms are not comparable.  However, for the BackMarking algorithms, just comparing them among themselves, I found that BM often times did fewer constraints checks then BMCBJ and BMJ.  I also found that BMJ did less constraints checks then BMCBJ, and this is consistent with Prosser’s work.  Although I also found out that FCBJ was very close in producing the same results for the time needed and the constraints checked.  All of the FC algorithms had high constraints checked for non-tight and non-dense problems, but low nodes visited.  So if you wanted to worry about constraints checked and not nodes visited, then the FC algorithms may not be you cup of tea.  I did not consider any value or variable ordering.  For future work, the main thing is to show that the Phase Transition occurs for all NP problems and they are not bounded.  Another thing is to determine how to model real world problems into the phase transition diagram with ease.  For myself I need to consider how to better implement the BackMarking algorithms.

