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Abstract: Constraint programming (CP) is an emergent software technology for declarative description and

effective solving of large, particularly combinatorial, problems especially in areas of planning and scheduling. It

represents the most exciting developments in programming languages of the last decade and, not surprisingly, it

has recently been identified by the ACM (Association for Computing Machinery) as one of the strategic

directions in computer research. Not only it is based on a strong theoretical foundation but it is attracting

widespread commercial interest as well, in particular, in areas of modelling heterogeneous optimisation and

satisfaction problems.

In the paper, we give a survey of constraint programming technology and its applications starting from the

history context and interdisciplinary nature of CP. The central part of the paper is dedicated to the description of

main constraint satisfaction techniques and industrial applications. We conclude with the overview of limitations

of current CP tools and with outlook of future directions.
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1 Introduction

In last few years, Constraint Programming (CP) has

attracted high attention among experts from many

areas because of its potential for solving hard real-

life problems. Not only it is based on a strong

theoretical foundation but it is attracting

widespread commercial interest as well, in

particular, in areas of modelling heterogeneous

optimisation and satisfaction problems. Not

surprisingly, it has recently been identified by the

ACM (Association for Computing Machinery) as

one of the strategic directions in computer research.

However, at the same time, CP is still one of the

least known and understood technologies.

Constraints arise in most areas of human

endeavour. They formalise the dependencies in

physical worlds and their mathematical abstractions

naturally and transparently. A constraint is simply a

logical relation among several unknowns (or

variables), each taking a value in a given domain.

The constraint thus restricts the possible values that

variables can take, it represents partial information

about the variables of interest. Constraints can also

be heterogeneous, so they can bind unknowns from

different domains, for example the length (number)

with the word (string). The important feature of

constraints is their declarative manner, i.e., they

specify what relationship must hold without

specifying a computational procedure to enforce

that relationship.

We all use constraints to guide reasoning as a key

part of everyday common sense. “I can be there

from five to six o’clock”, this is a typical constraint

we use to plan our time. Naturally, we do not solve

one constraint only but a collection of constraints

that are rarely independent. This complicates the

problem a bit, so, usually, we have to give and take.

Constraint programming is the study of

computational systems based on constraints. The

idea of constraint programming is to solve

problems by stating constraints (requirements)

about the problem area and, consequently, finding

solution satisfying all the constraints.

“Constraint Programming represents one of the

closest approaches computer science has yet made

to the Holy Grail of programming: the user states

the problem, the computer solves it.” [E. Freuder]

2 The interdisciplinary origins

The earliest ideas leading to CP may be found in

the Artificial Intelligence (AI) dating back to

sixties and seventies.

The scene labelling problem [41] is probably the

first constraint satisfaction problem that was

formalised. The goal is to recognise the objects in a

3D scene by interpreting lines in the 2D drawings,

First, the lines or edges must be labelled, i.e., they

are categorised into few types, namely convex (+),

concave (-) and occluding edges (<). In more

advanced systems, the shadow border is recognised

as well.



Figure 1

Scene labelling

There are a lot of ways how to label the scene

(exactly 3n, where n is a number of edges) but only

few of them has any 3D meaning. The idea how to

solve this combinatorial problem is to find legal

labels for junctions satisfying the constraint that the

edge has the same label at both ends. This reduces

the problem a lot because there is only a limited

number of legal labels for junctions.

Figure 2

Available labelling for junction

The main algorithms developed in those years (like

Waltz labelling algorithm [41]) were related to

achieving some form of consistency.

Another application for constraints is interactive

graphics where Ivan Sutherland’s Sketchpad [36],

developed in early 1960s, was the pioneering

system. Sketchpad and its follower, ThingLab [5]

by Alan Borning, were interactive graphics

applications that allowed the user to draw and

manipulate constrained geometric figures on the

computer’s display. These systems contribute to

developing local propagation methods and

constraint compiling.

The main step towards CP was achieved when

Gallaire [16], Jaffar & Lassez [20] noted that logic

programming was just a particular kind of

constraint programming. The basic idea behind

Logic Programming (LP), and declarative

programming in general, is that the user states what

has to be solved instead of how to solve it, which is

very close to the idea of constraints. Therefore the

combination of constraints and logic programming

is very natural and Constraint Logic Programming

(CLP) makes a nice declarative environment for

solving problems by means of constraints.

However, it does not mean that constraint

programming is restricted to CLP. Constraints were

integrated to typical imperative languages like C++

and Java as well.

The nowadays real-life applications of CP in the

area of planning, scheduling and optimisation rise

the question if the traditional field of Operations

Research (OR) is a competitor or an associate of

CP. There is a significant overlap of CP and OR in

the field of NP-Hard combinatorial problems.

While the OR has a long research tradition and

(very successful) method of solving problems using

linear programming, the CP emphasis is on higher

level modelling and solutions methods that are

easier to understand by the final customer. The

recent advance promises that both methodologies

can exploit each other, in particular, the CP can

serve as a roof platform for integrating various

constraint solving algorithms including those

developed and checked to be successful in OR.

As the above paragraphs show, the CP has an inner

interdisciplinary nature. It combines and exploits

ideas from a number of fields including Artificial

Intelligence, Combinatorial Algorithms,

Computational Logic, Discrete Mathematics,

Neural Networks, Operations Research,

Programming Languages and Symbolic

Computation.

3 Solving Technology

Currently, we see two branches of constraint

programming, namely constraint satisfaction and

constraint solving. Both share the same terminology

but the origins and solving technologies are

different.

Constraint satisfaction deals with problems defined

over finite domains and, currently, probably more

than 95% of all industrial constraint applications

use finite domains. Therefore, we deal with

constraint satisfaction problems mostly in the

paper.

Constraint solving shares the basis of CP, i.e.,

describing the problem as a set of constraints and

solving these constraints. But now, the constraints

are defined (mostly) over infinite or more complex

domains. Instead of combinatorial methods for

constraint satisfaction, the constraint solving

algorithms are based on mathematical techniques

such as automatic differentiation, Taylor series or

Newton method. From this point of view, we can

say that many famous mathematicians deal with

whether certain constraints are satisfiable (e.g.

recently proved Fermat’s Last Theorem).

3.1 Constraint Satisfaction

Constraint Satisfaction Problems [37] have been a

subject of research in Artificial Intelligence for

many years. A Constraint Satisfaction Problem

(CSP) is defined as:

• a set of variables X={x1,...,xn},

• for each variable xi, a finite set Di of possible

values (its domain), and

• a set of constraints restricting the values that the

variables can simultaneously take.
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Note that values need not be a set of consecutive

integers (although often they are), they need not

even be numeric.

A solution to a CSP is an assignment of a value

from its domain to every variable, in such a way

that all constraints are satisfied at once. We may

want to find:

• just one solution, with no preference as to which

one,

• all solutions,

• an optimal, or at least a good solution, given

some objective function defined in terms of

some or all of the variables.

Solutions to a CSP can be found by searching

(systematically) through the possible assignments

of values to variable. Search methods divide into

two broad classes, those that traverse the space of

partial solutions (or partial value assignments), and

those that explore the space of complete value

assignments (to all variables) stochastically.

3.1.1 Systematic Search

From the theoretical point of view, solving CSP is

trivial using systematic exploration of the solution

space. Not from the practical point of view where

the efficiency takes place. Even if systematic search

methods (without additional improvements) look

very simple and non-efficient they are important

because they make the foundation of more

advanced and efficient algorithms.

The basic constraint satisfaction algorithm, that

searches the space of complete labellings, is called

generate-and-test (GT). The idea of GT is simple:

first, a complete labelling of variables is generated

(randomly) and, consequently, if this labelling

satisfies all the constraints then the solution is

found, otherwise, another labelling is generated.

The GT algorithm is a weak generic algorithm that

is used if everything else failed. Its efficiency is

poor because of non-informed generator and late

discovery of inconsistencies. Consequently, there

are two ways how to improve efficiency of GT:

• The generator of valuations is smart (informed),

i.e., it generates the complete valuation in such

a way that the conflict found by the test phase is

minimised. This is a basic idea of stochastic

algorithms based on local search that are

discussed later.

• Generator is merged with the tester, i.e., the

validity of the constraint is tested as soon as its

respective variables are instantiated. This

method is used by the backtracking approach.

Backtracking (BT) [31] is a method of solving CSP

by incrementally extending a partial solution that

specifies consistent values for some of the

variables, towards a complete solution, by

repeatedly choosing a value for another variable

consistent with the values in the current partial

solution

As mentioned above, we can see BT as a merge of

the generating and testing phases of GT algorithm.

The variables are labelled sequentially and as soon

as all the variables relevant to a constraint are

instantiated, the validity of the constraint is

checked. If a partial solution violates any of the

constraints, backtracking is performed to the most

recently instantiated variable that still has

alternatives available. Clearly, whenever a partial

instantiation violates a constraint, backtracking is

able to eliminate a subspace from the Cartesian

product of all variable domains. Consequently,

backtracking is strictly better than generate-and-

test, however, its running complexity for most

nontrivial problems is still exponential.

There are three major drawbacks of the standard

(chronological) backtracking:

• thrashing, i.e., repeated failure due to the same

reason,

• redundant work, i.e., conflicting values of

variables are not remembered, and

• late detection of the conflict, i.e., conflict is not

detected before it really occurs.

Methods for solving the first two drawbacks were

proposed, namely backjumping and backmarking

(see below), but more attention was paid to detect

the inconsistency of partial solution sooner using

consistency techniques.

3.1.2 Consistency Techniques

Another approach to solving CSP is based on

removing inconsistent values from variables’

domains till the solution is got. These methods are

called consistency techniques and they were

introduced first in the scene labelling problem [41].

Notice that consistency techniques are

deterministic, as opposed to the non-deterministic

search.

There exist several consistency techniques [23,25]

but most of them are not complete. Therefore, the

consistency techniques are rarely used alone to

solve CSP completely.

The names of basic consistency techniques are

derived from the graph notions. The CSP is usually

represented as a constraint graph (network) where

nodes correspond to variables and edges are

labelled by constraints [29]. This requires the CSP

to be in a special form that is usually referred as a

binary CSP (contains unary and binary constraints

only). It is easy to show that arbitrary CSP can be



transformed to equivalent binary CSP [2], however,

in practice the binarization is not likely to be worth

doing and the algorithms can be extended to tackle

non binary CSP as well.

The simplest consistency technique is referred to as

a node consistency (NC). It removes values from

variables’ domains that are inconsistent with unary

constraints on respective variable.

The most widely used consistency technique is

called arc consistency (AC). This technique

removes values from variables’ domains that are

inconsistent with binary constraints. In particular,

the arc (Vi,Vj) is arc consistent if and only for every

value x in the current domain of Vi which satisfies

the constraints on Vi there is some value y in the

domain of Vj such that Vi=x and Vj=y is permitted

by the binary constraint between Vi and Vj.

Figure 3
Arc-consistency removes local inconsistencies

There exist several arc consistency algorithms

starting from AC-1 and concluding somewhere at

AC-7. These algorithms are based on repeated

revisions of arcs till a consistent state is reached or

some domain becomes empty. The most popular

among them are AC-3 and AC-4. The AC-3

algorithm performs re-revisions only for those arcs

that are possibly affected by a previous revision. It

does not require any special data structures opposite

to AC-4 that works with individual pairs of values

to remove potential inefficiency of checking pairs

of values again and again. It needs a special data

structure to remember pairs of (in)consistent values

of incidental variables and, therefore, it is less

memory efficient than AC-3.

Even more inconsistent values can be removed by

path consistency (PC) techniques. Path consistency

requires for every pair of values of two variables X,

Y satisfying the respective binary constraint that

there exists a value for each variable along some

path between X and Y such that all binary

constraints in the path are satisfied. It was shown

by Montanary [29] that CSP is path consistent if

and only if all paths of length 2 are path consistent.

Therefore path consistency algorithms can work

with triples of variables (paths of length 2). There

exist several path consistency algorithms like PC-1

and PC-2 but they need an extensive representation

({0,1}-matrix) of constraints that is memory

consuming. Less interesting ratio between

complexity and simplification factor and the

modifications to the connectivity of the constraint

graph by adding some edges to the graph are other

disadvantages of PC.

Figure 4

Path-consistency checks constraints along the path only.

All above mentioned consistency techniques are

covered by a general notion of K-consistency [12]

and strong K-consistency. A constraint graph is K-

consistent if for every system of values for K-1

variables satisfying all the constraints among these

variables, there exits a value for arbitrary K-th

variable such that the constraints among all K

variables are satisfied. A constraint graph is

strongly K-consistent if it is J-consistent for all

J≤K. Visibly:

• NC is equivalent to strong 1-consistency,

• AC is equivalent to strong 2-consistency,

• PC is equivalent to strong 3-consistency.

Algorithms exist for making a constraint graph

strongly K-consistent for K>2 but in practice they

are rarely used because of efficiency issues.

Although these algorithms remove more

inconsistent values than any arc-consistency

algorithm they do not eliminate the need for search

in general.

Clearly, if a constraint graph containing N nodes is

strongly N-consistent, then a solution to the CSP

can be found without any search. But the worst-

case complexity of the algorithm for obtaining N-

consistency in an N-node constraint graph is

exponential. Unfortunately, if a graph is (strongly)

K-consistent for K<N, then, in general,

backtracking (search) cannot be avoided, i.e., there

still exist inconsistent values.

Figure 5
Strongly (N-1)-consistent graph still has no complete labelling.

Because most consistency techniques (NC, AC,

PC) are not complete, i.e., there still remain some

inconsistent values, the restricted forms of these

algorithms takes attention as they remove similar

amount of inconsistencies but they are more

efficient. For example directional arc consistency

(DAC) revises each arc only once (it works under

given ordering of variables) and, thus, it requires

less computation than AC-3 and less space than

AC-4. Nevertheless, DAC is still able to achieve

full arc consistency in some problems (e.g., tree

constraint graphs).

a
b
c

a
b
c

Vi Vj

VN

{1,...,N-1} Vi

V2V1
{1,...,N-1} {1,...,N-1}

{1,...,N-1}
......

.....

≠

≠
≠

≠

V1

V2

V3

V4 V5

???V0

values

consistent pairs

of values

removed by

AC



It is also possible to weaken the path-consistency in

a similar way. The resulting consistency technique

is called directional path consistency (DPC) which

is again computationally less expensive than

achieving full path consistency.

Half way between AC and PC is Pierre Berlandier’s

restricted path consistency (RPC) [4] that extends

AC-4 algorithm to some form of path consistency.

The algorithm checks path-consistency along path

X, Y, Z if and only if some value of the variable X

has only one supporting value from the domain of

incidental variable Y. Consequently, the RPC

removes at least the same amount of inconsistent

pairs of values as AC and also some pairs beyond.

Figure 6

RPC removes more inconsistencies than AC

3.1.3 Constraint Propagation

Both systematic search and (some) consistency

techniques can be used alone to solve the CSP

completely but this is rarely done. A combination

of both approaches is a more common way of
solving CSP.

The Look Back schema uses consistency checks

among already instantiated variables. BT is a

simple example of this schema. To avoid some

problems of BT, like thrashing and redundant work,

other look back schemas were proposed.

Backjumping (BJ) [15] is a method to avoid

thrashing in BT. The control of backjumping is

exactly the same as backtracking, except when

backtracking takes place. Both algorithms pick one

variable at a time and look for a value for this

variable making sure that the new assignment is

compatible with values committed to so far.

However, if BJ finds an inconsistency, it analyses

the situation in order to identify the source of

inconsistency. It uses the violated constraints as a

guidance to find out the conflicting variable. If all

the values in the domain are explored then the BJ

algorithm backtracks to the most recent conflicting

variable. This is a main difference from the BT

algorithm that backtracks to the immediate past

variable.

Another look back schemas, called backchecking

(BC) and backmarking (BM) [18], avoid redundant

work of BT. Both backchecking and its descendent

backmarking are useful algorithms for reducing the

number of compatibility checks. If the algorithm

finds that some label Y/b is incompatible with any

recent label X/a then it remembers this

incompatibility. As long as X/a is still committed

to, the Y/b will not be considered again.

Backmarking is an improvement over backchecking

that avoids some redundant constraint checking as

well as some redundant discoveries of

inconsistencies. It reduces the number of

compatibility checks by remembering for every

label the incompatible recent labels. Furthermore, it

avoids repeating compatibility checks which have

already been performed and which have succeeded.

All look back schemas share the disadvantage of

late detection of the conflict. In fact, they solve the

inconsistency when it occurs but do not prevent the

inconsistency to occur. Therefore Look Ahead

schemas were proposed to prevent future conflicts

[30].

Forward checking (FC) is the easiest example of

look ahead strategy. It performs arc-consistency

between pairs of not yet instantiated variable and

instantiated variable, i.e., when a value is assigned

to the current variable, any value in the domain of a

“future” variable which conflicts with this

assignment is (temporarily) removed from the

domain. Therefore, FC maintains the invariance

that for every unlabelled variable there exists at

least one value in its domain that is compatible with

the values of instantiated/labelled variables. FC

does more work than BT when each assignment is

added to the current partial solution, nevertheless, it

is almost always a better choice than chronological

backtracking.

Even more future inconsistencies are removed by

the Partial Look Ahead (PLA) method. While FC

performs only the checks of constraints between the

current variable and the future variables, the partial

look ahead extends this consistency checking even

to variables that have not direct connection with

labelled variables, using directional arc-

consistency.

The approach that uses full arc-consistency after

each labelling step is called (Full) Look Ahead

(LA) or Maintaining Arc Consistency (MAC). It

can use arbitrary AC algorithm to achieve arc-

consistency, however, it should be noted that LA

does even more work than FC and partial LA when

each assignment is added to the current partial

solution. Actually, in some cases LA may be more

expensive than BT and, therefore FC and BT are

still used in applications.
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Figure 7

Comparison of propagation techniques

3.1.4 Stochastic and Heuristic Algorithms

Till now, we have presented the constraint

satisfaction algorithms that extend a partial

consistent labelling to a full labelling satisfying all

the constraints. In the last few years, greedy local

search strategies have become popular, again.

These algorithms alter incrementally inconsistent

value assignments to all the variables. They use a

“repair” or “hill climbing” metaphor to move

towards more and more complete solutions. To

avoid getting stuck at “local minimum” they are

equipped with various heuristics for randomising

the search. Their stochastic nature generally voids

the guarantee of “completeness” provided by the

systematic search methods.

Hill-climbing is probably the most famous

algorithm of local search [31]. It starts from a
randomly generated labelling of variables and, at

each step, it changes a value of some variable in

such a way that the resulting labelling satisfies

more constraints. If a strict local minimum is

reached then the algorithm restarts at other

randomly generated state. The algorithm stops as

soon as a global minimum is found, i.e., all

constraints are satisfied, or some resource is

exhausted. Notice, that the hill-climbing algorithm

has to explore a lot of neighbours of the current

state before choosing the move.

To avoid exploring the whole state’s

neighbourhood the min-conflicts (MC) heuristic

was proposed [27]. This heuristic chooses randomly

any conflicting variable, i.e., the variable that is

involved in any unsatisfied constraint, and then

picks a value which minimises the number of

violated constraints (break ties randomly). If no

such value exists, it picks randomly one value that

does not increase the number of violated constraints

(the current value of the variable is picked only if

all the other values increase the number of violated

constraints).

Because the pure min-conflicts algorithm cannot go

beyond a local-minimum, some noise strategies

were introduced in MC. Among them, the random-

walk (RW) strategy becomes one of the most

popular [33]. For a given conflicting variable, the

random-walk strategy picks randomly a value with

probability p, and apply the MC heuristic with

probability 1-p. The random-walk heuristic can be

applied to hill-climbing algorithm as well and we

get the Steepest-Descent-Random-Walk (SDRW)

algorithm.

Tabu search (TS) is another method to avoid

cycling and getting trapped in local minimum [17].

It is based on the notion of tabu list, that is a special

short term memory that maintains a selective

history, composed of previously encountered

configurations or more generally pertinent

attributes of such configurations. A simple TS

strategy consists in preventing configurations of

tabu list from being recognised for the next k

iterations (k, called tabu tenure, is the size of tabu

list). Such a strategy prevents algorithm from being

trapped in short term cycling and allows the search

process to go beyond local optima.

Tabu restrictions may be overridden under certain

conditions, called aspiration criteria. Aspiration

criteria define rules that govern whether next

configuration is considered as a possible move even

it is tabu. One widely used aspiration criterion

consists of removing a tabu classification from a

move when the move leads to a solution better than

that obtained so far.

Another method that searches the space of complete

labellings till the solution is found is based on

connectionist approach represented by GENET

algorithm [42]. The CSP problem is represented

here as a network where the nodes correspond to

values of all variables. The nodes representing

values for one variable are grouped into a cluster

and it is assumed that exactly one node in the

cluster is switched on that means that respective

value is chosen for the variable. There is an

inhibitory link (arc) between each two nodes from

different clusters that represent incompatible pair of

values according to the constraint between the

respective variables.

Figure 8
Connectionist representation of CSP

The algorithm starts with random configuration of

the network and re-computes the state of nodes in

cluster repeatedly taking into account only the state

of neighbouring nodes and the weights of

connections to these nodes. When the algorithm

reaches a stable configuration of the network that is

not a solution of the problem, it is able to recover
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from this state by using simple learning rule that

strengthens the weights of connections representing

the violated constraints. As all above mentioned

stochastic algorithms, the GENET is incomplete,

for example it can oscillate.

3.2 Constraint Optimization

In many real-life applications, we do not want to

find any solution but a good solution. The quality

of solution is usually measured by an application

dependent function called objective function. The

goal is to find such solution that satisfies all the

constraints and minimise or maximise the objective

function respectively. Such problems are referred to

as Constraint Satisfaction Optimisation Problems

(CSOP).

A Constraint Satisfaction Optimisation Problem

(CSOP) consists of a standard CSP and an

optimisation function that maps every solution

(complete labelling of variables) to a numerical

value [37].

The most widely used algorithm for finding optimal

solutions is called Branch and Bound (B&B) [24]

and it can be applied to CSOP as well. The B&B

needs a heuristic function that maps the partial

labelling to a numerical value. It represents an

under estimate (in case of minimisation) of the

objective function for the best complete labelling

obtained from the partial labelling. The algorithm

searches for solutions in a depth first manner and

behaves like chronological BT except that as soon

as a value is assigned to the variable, the value of

heuristic function for the labelling is computed. If

this value exceeds the bound, then the sub-tree

under the current partial labelling is pruned

immediately. Initially, the bound is set to (plus)

infinity and during the computation it records the

value of best solution found so far.

The efficiency of B&B is determined by two

factors: the quality of the heuristic function and

whether a good bound is found early. Observations

of real-life problems show also that the “last step”

to optimum, i.e., improving a good solution even

more, is usually the most computationally

expensive part of the solving process. Fortunately,

in many applications, users are satisfied with a

solution that is close to optimum if this solution is

found early. Branch and bound algorithm can be

used to find sub-optimal solutions as well by using

the second “acceptability” bound. If the algorithm

finds a solution that is better than the acceptability

bound then this solution can be returned to the user

even if it is not proved to be optimal.

3.3 Over-Constrained Problems

When a large set of constraints is solved, it appears

typically that it is not possible to satisfy all the

constraints because of inconsistency. Such systems,

where it is not possible to find valuation satisfying

all the constraints, are called over-constrained.

Several approaches were proposed to handle over-

constrained systems and among them the Partial

Constraint Satisfaction and Constraint Hierarchies

are the most popular.

Partial Constraint Satisfaction (PCSP) by Freuder

& Wallace [13] involves finding values for a subset

of the variables that satisfy a subset of the

constraints. Viewed another way, some constraints

are “weaken” to permit additional acceptable value

combinations. By weakening a constraint we mean

enlarging its domain. It is easy to show that

enlarging constraint’s domain covers also other

ways of weakening a CSP like enlarging a domain

of variable, removing a variable or removing a

constraint.

Formally, PCSP is defined as a standard CSP with

some evaluation function that maps every labelling

of variables to a numerical value. The goal is to

find labelling with the best value of the evaluation

function.

The above definition looks similar to CSOP but,

note, that now we do not require all the constraints

to be satisfied. In fact, the global satisfaction of

constraints is described by the evaluation function

and, thus, the constraints are used as a guide to find

an optimal value of the evaluation function.

Consequently, in addition to handle over-

constrained problems, PCSP can be seen as a

generalisation of CSOP. Many standard algorithms

like backjumping, backmarking, arc-consistency,

forward checking and branch and bound were

customised to work with PCSP.

Constraint hierarchies by Alan Borning et all [6] is

another approach of handling over-constrained

problems. The constraint is weakened explicitly

here by specifying its strength or preference. It

allows one to specify not only the constraints that

are required to hold, but also weaker, so called soft

constraints. Intuitively, the hierarchy does not

permit to the weakest constraints to influence the

result at the expense of dissatisfaction of a stronger

constraint. Moreover, constraint hierarchies allow

“relaxing” of constraints with the same strength by

applying, e.g., weighted-sum, least-squares or

similar methods.

Currently two groups of constraint hierarchy

solvers can be identified, namely refining method

and local propagation. While the refining methods

solve the constraints starting from the strongest

level and continuing to weaker levels, the local

propagation algorithms gradually solve constraint

hierarchies by repeatedly selecting uniquely

satisfiable constraints. In this technique, a single

constraint is used to determine the value for a



variable. Once this variable’s value is known, the

system may be able to use another constraint to find

a value for another variable, and so forth. This

straightforward execution phase is paid off by a

foregoing planning phase that chooses the order of

constraints to satisfy.

Note finally, that PCSP is more relevant to

satisfaction of constraints over finite domains,

whereas constraint hierarchy is a general approach

that is suitable for all types of constraints.

4 Applications

Constraint programming has been successfully

applied to many different problem areas as diverse

as DNA structure analysis, time-tabling for

hospitals or industry scheduling. It proves itself to

be well adapted to solving real-life problems

because many application domains evoke constraint

description naturally.

Assignment problems were perhaps the first type of

industrial application that were solved with the

constraint tools. A typical example is the stand

allocation for airports, where aircraft must be

parked on the available stand during the stay at

airport (Roissy airport in Paris) [10] or counter

allocation for departure halls (Hong Kong

International Airport) [8]. Another example is berth

allocation to ships in the harbour (Hong Kong

International Terminals) [32] or refinery berth

allocation.

Another typical constraint application area is

personnel assignment where work rules and

regulations impose difficult constraints. The

important aspect in these problems is the

requirement to balance work among different

persons. Systems like Gymnaste [7] were

developed for production of rosters for nurses in

hospitals, for crew assignment to flights (SAS,

British Airways, Swissair) or stuff assignment in

railways companies (SNCF, Italian Railway

Company) [11].

Figure 9

Schedule description using Gantt charts

Probably the most successful application area for

finite domain constraints are scheduling problems,

where, again, constraints express naturally the real-

life limitations. Constraint based software is used

for well-activity scheduling (Saga Petroleum) [22],

forest treatment scheduling [1], production

scheduling in plastic industry (InSol) [44] or for

planning production of military and business jets

(Dassault Aviation) [3]. The usage of constraints in

Advanced Planning and Scheduling systems even

increases due to current trends of on-demand

manufacturing.

Another large area of constraint application is

network management and configuration. These

problems include planning of cabling of the

telecommunication networks in the building

(France Telecom) or electric power network

reconfiguration for maintenance scheduling without

disrupting customer services (Ether) [9]. Another

example is optimal placement of base stations in

wireless indoor telecommunication networks [14].

There are many other areas than have been tackled

using constraints. Recent applications include

computer graphics (expressing geometric coherence

in the case of scene analysis, drawing programs,

user interfaces), natural language processing

(construction of efficient parsers), database systems

(to ensure and/or restore consistency of the data),

molecular biology (DNA sequencing, chemical

hypothesis reasoning), business applications (option

trading), electrical engineering (to locate faults),

circuit design (to compute layouts), transport

problems etc.

5 Limitations

Extensive application usage of constraint

programming in solving real-life problems

uncovers a number of limitations and shortcomings

of the current tools.

As many problems solved by CP belong to the area

of NP-hard problems, the identification of

restrictions that make the problem tracktable is very

important both from the theoretical and the

practical points of view. However, as with most

approaches to NP-hard problems, efficiency of

constraint programs is still unpredictable and the

intuition is usually the most important part of

decision when and how to use constraints. The most

common problem stated by the users of the

constraint systems is stability of the constraint

model. Even small changes in a program or in the

data can lead to a dramatic change in performance.

Unfortunately, the process of performance

debugging for a stable execution over a variety of

input data, is currently not well understood.

Another problem is choosing the right constraint

satisfaction technique for particular problem.



Sometimes fast blind search like chronological

backtracking is more efficient than more expensive

constraint propagation and vice versa.

A particular problem in many constraint models is

the cost optimisation. Sometimes, it is very difficult

to improve an initial solution, and a small

improvement takes much more time than finding

the initial solution. There is a trade off between

“anytime” solution and “best” solution.

Constraint programs are incremental in some sense

(they can add constraints dynamically) but they

have no support for online constraint solving that is

required in current changing environment. Most of

the time, the constraint systems produce plans that

are then executed but, the machines break down,

planes are delayed and new orders come at the

worst possible time. This requires fast rescheduling

or upgrading the current solution to absorb

unexpected events. Again, there is trade off

between optimality of the solution that usually

means tight schedule and less optimal but stable

solution that absorbs small deviations.

6 Trends

The shortcomings of current constraint satisfaction

systems mark the directions for the further

development. Among them, modelling looks one of

the most important. The discussions started about

using of global constraints that encapsulate

primitive constraints into a more efficient package

(e.g., all-different constraint). A more general

question concerns modelling languages to express

constraint problems. Currently, most CP packages

are either extensions of a programming language

(CLP) or libraries that are used with conventional

programming languages (ILOG Solver) [43].

Constraint modelling languages similar to algebraic

description are introduced to simplify description of

constraints (Numerica) [40] or visual modelling

languages are used to generate constraint programs

from visual drawings (VisOpt VML) [44].

Figure 10

Visual Modelling Language in VisOpt

From the lower level point of view the visualisation

techniques for understanding search becomes more

popular as they help to identify the bottlenecks of

the system [34]. Controlling search is probably one

of the least developed parts of the constraint

programming paradigm and in may problems the

choice of search routine is done an ad-hoc basic.

The study of interactions of various constraint

solving methods is one of the most challenging

problems. The hybrid algorithms combining

various constraint solving techniques are one of the

results of this research [19].

Another interesting area of study is solver

collaboration [28] and correlative combination of

theories in prove theory. The combination of

constraint satisfaction techniques with traditional

OR methods like integer programming is another

challenge of current research.

Last but not least, parallelism and concurrent

constraint solving (cc) [39] are studied as methods

for improving efficiency. In these systems, multi-

agent technology looks very promising.

7 Summary

In the paper we give a survey of basic solving

techniques behind constraint programming. In

particular we concentrate on constraint satisfaction

algorithms that solve constraints over finite

domains. We also overview the main techniques of

solving constraint optimisation problems and over-

constrained problems. Finally, we list key

application areas of constraint programming,

describe current shortcomings and present some

ideas of future development.
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