Summary of Class Discussion of February 24 and 26, 2003 on Chapter 7

Scribe: Zheying (Jane) Yang

February 27-28, 2003

1. Discussion on local search

During these two classes, we discussed local search algorithms, more specifically strategies and heuristics for improving local search. Ryan Kinworthy was the speaker. Zou Hui spoke about a few minutes at the end of class Feb, 26th. Ryan’s slides reflected the sections of Dechter’s book and were easy to follow. Why study local search if it is not sound or complete? The answer is in the slide number 4: local search can solve large problems. Also local search is fast and requires little memory. It starts with an arbitrary full assignment to all variables and resolves inconsistencies by local repairs. We say that repair is local because we change the value of a single variable. Local search can be enhanced with heuristics to avoid drawbacks, such as to escape local minima.

2. Advantages of SLS

Combining randomization and heuristic makes local search works extremely well.

· Greedy +Stochastic (Stochastic Local Search (SLS)

· SLS works well in some domains, such as solving (SAT) problems (where domains are bi-valued) and the n-queen problems (which can also be modeled by a bi-valued CSP).

· SLS is significantly faster than traditional BT search on these problems.

· SLS can solve 1.000.000 queens problem in less than a minute, however BT search (conditioning) can only solve a few hundred queens problem.

· It seems to be the best choice for very large problems with many solutions.

3. Basic Properties of Local Search

Unlike systematic search, which extends a partial solution into a global one while keeping each partial solution consistent, local search starts by randomly instantiating all variables and removes inconsistency by local repairs. It moves step by step towards the final solution. It has the following properties:

· Not complete

· Not sound

· Anytime algorithm, we can set a timing, let the program run a certain time, then stop, the longer we run the algorithm, the more we can improve on the solution.

· It is based on a hill-climbing technique to get to optimal solutions and uses heuristics to improve performance

· Each state holds an assignment to all variables and the search space holds all complete states, both consistent and inconsistent.

4. How Greedy Search Works

· A greedy local search algorithm starts by randomly instantiating all variables,

· then move from one complete instantiation to the next, according to some cost function related to the task (e.g., the number of violated constraints, also called the number of conflicts).

· Change a value of a single variable that yields the greatest reduction in cost function.

· The algorithm terminate when

· cost function = 0, find a global solution. OR

· get stuck in a local optimum, which is one of the drawbacks of local search.

5. Improving SLS

SLS can get stuck in local minima, how to escape local minima is the focus of the research on local search. We use heuristics or combinations of different heuristics. Before we discuss heuristics, we need to know the reasons of the local optimum. In the class, Ryan mainly discussed Plateau.

· Plateau, it means flat. In this area (local optima), the cost function cannot be improved if we continue to move to the neighbors.

· Ridge: Local search may oscillate from side to side, which causes slow progress. (Ryan drew the example cure shows that)

5.1 Heuristics for improving SLS

There are various heuristics for improving SLS:

· Constraint Weighting—the cost function is a weighted sum of the violated constraints.

· At each step, the algorithm first selects a variable-value pair such that when the value of the variable is changed to the designated value, it leads to the largest reduction in the cost function F.

· The idea is at local minima, the weights are adjusted, increasing by 1 the weight of each constraint that is violated by the current assignment.

· This smart idea ensures that the current assignment is no longer a local minima relative to the new cost function. (In class, Ryan mainly discussed Constraint weighting, and also gave us an easy to understand example.)
· Tabu Search—keeps a list of the last n VV assignments, when making new assignments, those in the tabu list are forbidden.
· Value Propagation—Use value propagation such as unit resolution or arc-consistency, whenever a local minimum is encountered. (Warning: Local search does not change the domains of the variables, it just makes assignments. Value propagation does revise the domains of the variables, same as systematic search does. We are already beyond simple, vanilla-flavor local search.)

· Automating Max-Flips—Continues search as long as there is progress. Progress is defined as finding an assignment that satisfies more constraints than found so far in that particular run. (Ryan gave us an example on this topic.)

5.2.1 Random Walk Strategy

· Random Walk search is another popular technique for escaping local minima.

· It chooses among the possible neighboring states, not necessarily the best one, but a random one. It must restart using the heuristic random restart to avoid local minimum, and save the best results found so far.

Examples:

· WalkSAT, a successful algorithm specifically introduced for SAT problems.

· Simulated annealing.

5.2.2 Simulated Annealing

Simulated annealing is an important local search strategy and works as follows:
· Use a noise model from statistical mechanics;

· At each step, the algorithm computes the change in the cost function ((/T) when the value of the variable is changed to the value picked. (In Ryan’s slide, cost function is written as (T, Eric Moss pointed out it should be ((/T). Where T denotes temperature. It should be either constant or slowly reduced from a high temperature to a near zero temperature according to some cooling schedule.

· We execute the change if it improves or has no impact on the cost function.

· Otherwise, we make the change with probability e- (/T. The algorithm converges to the exact solution if T is reduced gradually.

6. Empirical Evaluation

SLS algorithms can be evaluated empirically, either on some given benchmarks or on randomly generated problems. In recent years, the practice has been to generate hard random problems drawn from the phase transition.

According to this topic, Cate Anderson asked if the test problems are guaranteed to have at least a solution, Ryan said it is not guarantee for randomly generated problems. Dr. Choueiry said random generators that guarantee the existence of a solution are a recent development (since circa 2000) and are not a common consideration in traditional benchmark libraries.

The evaluation on GSAT algorithms as below:

· As the number of variables and clauses increases, the running time of the algorithms increase. See the page 204, Table 7.1, for basic GSAT algorithm, the left two columns denote the number of variables and clauses increase from the top to the bottom, we can see when the number of variables and clauses increases, the average number of flips are increased, then the average number of restarts are increased, thus the total running time for finding a solution is increased.
· SLS algorithms are listed from the most efficient to least efficient one on hard randomly generated 3CNF instances (page 204, Table 7.1) as follows:

· Simulated Annealing

· Random Walk with Noise (which is not discussed in the chapter)

· Random Walk (i.e., GSAT + walk)

· Basic GSAT

7. Hybrids of Local Search &Inference

To improve the performance of local search, Dechter and Kask combine it with inference, in the form of constraint propagation. This yields hybrids local search techniques, hybrid SLS. The motivation is as follows:

· There exist problems that are easy to solve for BT, but hard for SLS

· If we combine inference with SLS, certain hard problems become easy to solve. (For example, 3SAT problems with tightly connected clusters of variables that are loosely connected can be hard for SLS. If we use hybrids of local search and inference, those 3SAT problems become easy to solve.)

One hybrid was discussed in the context of the cycle-cutset strategy to problem solving, which was originally developed for systematic search by Dechter and Pearl.

7.1 Cycle-Cutset

Definition is omitted from this chapter, it appears on page 146 of chapter 5. The idea of the cycle cutset is to choose some variables whose removal from the CSP would make the constraint graph a tree. These variables are called the cutset variables and the remaining ones are called the tree variables.

There can be many ways to choose the cutset variables. Ideally one wants to choose the ones that yield the smallest set. Ryan was not able to find a formal proof in the literature that proves that the cycle-cutset minimization problem is an NP-hard problem, but we suspect it is. Dechter does not provide a reference either. Note from instructor: find the reference and you get 2 points on your final grade.

The idea of the hybrid is the variables into two sets: the cutset variables and the tree variables. We use SLS to instantiate the variables in the cutset and we use a tree propagation algorithm Tree Algorithm, which uses consistency propagation along the constraints in the tree, to instantiate the tree variables. The algorithm iterates between the two processes (i.e., SLS for cutset variables and TA for tree variables) using a clever cost computation process. Again, when SLS fixes the instantiations for the cycle-cutset, the remaining network does not contain cycles at all and has a tree structure. We then use tree-inference algorithm to solve the problem or use directed-arc-consistency algorithm to solve, because the remaining network has the width 1. The class discussion got stuck on the tree algorithm, and the mechanism for computing the cost of each variable-value pair in TA.

7.2 Tree Algorithm

· The TA algorithm takes

· An arc consistent network R
· Divided variables set X into two subsets, Z and Y, which Z(X, Y(X, X= Z(Y. We put Cycle-Cutset variables into set Y, and put tree variables into set Z.

· Initialization:

~ For any value y[i] in the any cutest variable yi, set the cost Cyi (y[i], y)= 0.

~ The algorithm iterates from leaves to the root in the tree. For every variable Zi, and any value ai in Dzi, it computes the cost of each assignment.

~ Then it computes in reverse order, from root to leaves new assignments for every tree variable zi. Ryan writes well detail in his slides:

~ For a tree variable zi, let Dzi be its consistent values with Vzi the value assigned to its parent pi, assign each variable a value based on the results of the previous calculation.

· The algorithm returns

- An assignment Z=z, Y=y that is a local minimum of the number violated constraints C(z,y).
7.3 SLS with Cycle-cutset

The combination of TA and SLS as described above yields a new hybrid algorithm, SLS+CC:

· Use tree algorithm minimizes the cost of tree subnetworks given a fixed cycle-cutset assignment.

· In cycle-cutset is a much smaller network, we can use BT algorithms to solve it, otherwise we use SLS.

· We can consider that if the assignments of cycle-cutset are fixed, we try to run tree algorithm to find out the optimal solution for the given assignments in cycle-cutset. Otherwise, when the tree variables are instantiated fixed, then run BT (or SLS) on the cutset variables to find a local solution. This process is repeated, until find global solutions or no solution, the algorithm stops after a given number of iterations.

One nice feature of the algorithm is that the two searches (on the cutset variables and on the tree variables) are working together, in a local search fashion, towards a solution, as Hui Zou later explained.

7.4 The performance of SLS +CC

The performance of this hybrid algorithm seems to depend on the proportion of cutset variables with respect to the total variables in the original network. Empirical evaluations reported in the paper are:

1. If Cycle-cutset <30% of the variables, then SLS+CC can be 3-4 times more efficient than using SLS only.

2. When Cycle-cutset is about 30%, than SLS+CC is almost same as SLS.

3. If Cycle-cutset is bigger than 30%, than SLS+CC is worse than SLS. The hybrid should not be used.

7.5 Zou’s talk

Zou Hui said, that all variables are partitioned into two groups, the X set, which holds cycle-cutset variables, and the Y set, which holds tree variables. We solve them separately. To solve the X set, we can use either systematic, BT search or local search. To solve Y set, we use a dynamic programming-like algorithm, which computes costs of assignments recursively. (The relation to dynamic programming is interesting, but more intuitive than formal.) We loop until we find a satisfactory solution or run out of time. This is also an anytime algorithm.

We discussed how the cost of a vvp in TA is first computed bottom-up and the used in the top-down instantiation process. In this process inconsistent tuples are accounted for a weight or 1 and the consistent ones for a weight of 0. In the top-down instantiation process, from the root of the tree towards its leaves, the values in the domain of the current variable are divided into two groups, one is consistent, and one is inconsistent with the current path and the corresponding weights are taken into account in the equation for choosing the best value to be assigned to the current variable:

v(Xi) = argmin k (dxi (Cxi(k) +Wxi,p(xi)(k, v(p(Xi))))

It was noted that the description of the algorithm appeared redundant. If consistent values only were considered, then Wxi,p(xi)(k, v(p(Xi)) should be always 0, and thus not appear in the above equation.

8. Summary of Local Search

The advantages of local search are:

1. Much faster in some domain types of problems than BT search.

2. It can solve problems considered hard to solve.

3. It can be combined with systematic search algorithm and inference techniques to make local search more attractive.

Its disadvantages are:

1. It does not guarantee a solution, even when one exists.

2. It has some drawbacks during search, such as getting stuck in local minima or lost on ridges and plateaus.

3. As notes on Ryan’s slides, such strategies must carefully encoded, otherwise performance may badly deteriorate badly.

4. Local search should be used on suitable domain problems. Otherwise, it may get worst time complexity.

Note that what constitutes a suitable domain is not formally defined.

9. References

Ryan’s slides

Berthe Choueiry, CSE476/876 Spring 2002, instructor’s notes

Rina Dechter, Constraint Processing. Manuscript of Oct, 3, 2002.

