Minutes of Class Discussion on Tree-Decomposition Methods (Part II)

Content: 9.1.2, 9.2.1

Speaker: Anagh Lal

Scribe: Madeline Hardojo

Corrector: Anagh Lal

9.1.2.
Recognizing Acyclic Networks

The procedures to recognize the presence of an acyclic network are mostly used in the area of database theory. In database theory, an acyclic database schema is desirable as it ensures that the relations when joined together will give us the original relation back. In other words, the decomposition into relations is a lossless join decomposition. An acyclic constraint network for a CSP has the desirable topological property that the dual of the hypergaph is a tree., allowing for efficient solving as the width of a tree is 1.

There are two methods for recognizing acyclic networks:

1. Dual-Acyclicity – Make use of dual graph

2. Primal-Acyclicity – Make use of primal graph

Dual-Acyclicity

If the hypergraph has a join-tree, the join-tree is a maximum spanning tree of the hypergraph’s dual graph. When generating the maximal spanning tree, we maximize the number of variables on the edge of the dual graph.

To check whether a hypergraph has an acyclic network:

1. Take the dual graph of the hypergraph.

2. Find its maximum spanning tree.

3. Check whether the maximum spanning tree satisfies the property of connectedness.

4. If it does, then the maximum spanning tree is the join-tree of the hpyergraph and network is guaranteed to be acyclic.

In non-binary domain:

Hypergraph

Dual Domain

Hypertree

Dual Graph

Acyclic Network

Join Graph

Join Tree

Figure 1. Relationship between hypergraph and dual graph

The complexity of Dual-Acyclicity algorithm is O(e3), where e is the number of nodes in the joined-tree.

Primal-Acyclicity

To check for acylycity:

1. In maximal cardinality ordering of the primal graph, check whether the parents of each node are connected.

2. If they are, check whether the graph satisfies the conformality property or not. This is done by checking whether there is a 1-to-1 mapping between maximal cliques and scopes of constraints. (1-to-1 mapping means: given a domain and a range, each member of domain should be connected to exactly one member of the range, and vice versa)

3. If it is, then acyclicity is guaranteed. Create the join tree for the network.

Example (9.1.10 on Page 256):

Figure 2 shows the hypergraph of a constraint network)

Figure 2. Hypergraph on page Figure 9.1 (a) page 251 (Dechter’s Book)
Its corresponding primal graph is:

Figure 3. Primal Graph of Figure 2

The class reviewed the concepts of Max-cardinality ordering and derived the max-cardinality ordering for the primal graph of Figure 2 to be d = {C, A, B, E, D, F}.

Figure 4. Primal graph of Figure 3 under ordering d={C, A, B, E, D, F}
As we can clearly see, the parents of each node are connected. The cliques from the primal graph are: ABC, AEF, CDE, ACE. We want to order them by their highest variable in the ordering (C is the highest, F is the lowest). Therefore, the order of cliques are: ABC, ACE, CDE, and AEF. As we can see from the hypergraph, the cliques correspond 1-to-1 to the scopes of the constraint. Thus, as the primal graph is chordal and satifies conformality then the network is acyclic.

Now, we create the join-tree. From the latest clique in the ordering, connect every clique to an earlier clique with which it shares a maximal/maximum number of variables:

1. Start from AEF. Connect AEF to ACE because they share the maximal number of variables, which is 2 (AE).

2. Then, choose CDE. Connect CDE with ACE because they share the maximal number of variable.

3. Continue by choosing ACE. Its only earlier clique is ABC, so connect ACE with ABC.

The resulting join-tree is as shown in Figure 5:

Figure 5. Join-tree of the hypergraph on Figure 2
Anagh mentioned that the only case where a network is not acyclic is when the primal graph is not chordal. Furthermore, he said that he could not find a case where primal graph is chordal but the graph does not satisfy the conformality test. What happens is that when a graph is not chordal, to enforce chordality on the graph, we connect the parents of each node. This might result in an addition of a constraint (clique) that would not correspond to any constraint in the hypergraph.

9.2.1 Join-tree clustering

Join-tree clustering is an algorithm to transform an arbitrary constraint network into an equivalent acyclic network. Unfortunately we were not able to cover the actual algorithm in the class. The following is an illustration of the principle behind the join-clustering algorithm.

In the class, Anagh gave an example where the original graph is non-acyclic. Given a hypergraph, R1, as shown on Figure 6.

Figure 6. Hypergraph R1

Its corresponding dual graph is shown on Figure 7.

Figure 7. Dual graph of they hypergraph R1

We want to make this look like a tree. So, we get rid of all the redundancies (marked by red lines). For example, ADE and BCD shared a common variable D. However, D exist between ADE with ABD (AD) and ABD with BCD (BD). So, D between ADE and BCD can be implied, therefore, we can get rid of it. Similarly with the D between ABD with CDE and E between ADE and EF.

The reduced dual graph still not a tree, as we can see in Figure 8.

Figure 8. Reduced dual graph of R1

What we could do is to group ABD, BCD, and ADE into a cluster or a sub-problem (as indicated by the red grouping). Doing this, the dual graph would become a join-tree.

Figure 9. Join-tree of R1

By dual-acyclicity, we know that the network is now guaranteed its acycility. The corresponding hypertree from the join-tree given bellow is a hypertree embedding of R1.

Figure 10. Hypertree embedding of R1

A

B

C

D

E

F

C

A

B

E

D

F

F

C

EF

CDE

A

BCD

ABD

B

E

D

AEF

CDE

ABC

ACE

AE

EC

AC

A

B

C

D

E

F

RADE

REF

RABD

RBCD

RCDE

ADE

ABD

EF

BCD

CDE

AD

BD

CD

E

E

DE

D

D

ADE

AD

DE

BD

CD

E

EF

CDE

ABCDE

CDE

E

A

RCDE

RABCDE

B

C

D

REF

E

F

