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CSCE 310J
Data Structures & Algorithms

�Giving credit where credit is due:
» Most of slides for this lecture are based on 

slides created by Dr. Ben Choi, Louisiana 
Technical University.

» I have modified them and added new slides
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Recursive Procedures

� You were supposed to be introduced to recursive 
procedures in CSCE 156.

� What recursive procedures have you seen?
� Many loops can be replaced with recursive procedures.

» In some algorithms, it is easier to use recursion than loops!

� Divide and Conquer algorithms frequently use recursive 
procedures to divide the data set into one or more parts and 
then recursively apply the algorithm to the smaller parts.
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Example:
Binary Search

int binarySearch(int[] entry, int first, int last, int key)
1.  if (last < first)
2.       index = -1
3.  else
4.      int middle = (first + last)/2
5.      if (key == entry[middle])
6.         index = middle
7.      else if (key < entry[middle])
8.         index = binarySearch(entry, first, middle -1, key)
9.      else
10.       index = binarySearch(entry, middle +1, last, key)
11. return index
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Designing Recursive 
Procedures

� Think Inductively
� Converge to a base case (stopping the recursion)

» identify some unit of measure (running variable)
» identify the easy cases, called base cases

� Assume algorithm p must solve the problem with input 
sizes ranging from 0 through 100
» assume p99 solved a subproblem for all sizes 0 through 99
» if p detects a case that is not the base case, it calls p99 with a 

proper subset of the input data
� p99 satisfies:

1. The subproblem size is less than p’s problem size
2. The subproblem size is not below the minimum
3. The subproblem satisfies all other preconditions of p99 (which are 

the same as the preconditions of p)
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Recursive Procedure Design 
Example

� Problem:
» Write a delete(L, x) procedure for a list L, which is supposed to 

delete the first occurrence of x
» However, it is possible x does not occur in L

� Strategy:
» Use a recursive Procedure
» The size of the problem is the number of elements in list L
» Use IntList ADT
» Base cases: ??
» Running variable (converging number): ??
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ADT for Lists
IntList nil   //constant denoting the empty list.

IntList consructList(int newElement, IntList oldList)
Precondition: None. 
Postconditions: If newList = constructList(newElement, oldList) then

1. newList refers to a newly created list object;
2. newList ≠ nil;
3. first(newList) = newElement;
4. rest(newList) = oldList

int first(IntList aList)  // access function
Precondition: aList ≠ nil
Postcondition: if element = first(aList) then

1. element ≠ nil

IntList rest(IntList aList)  // access fcn
Precondition: aList ≠ nil
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Algorithm for Recursive 
delete(L, x) from list

IntList delete(IntList initialList, int anElement)
1. IntList resultList, subproblemList;
2. if (initialList == nil)
3. resultList = initialList;
4. else if (anElement == first(initialList))
5. resultList = rest(initialList);
6. else 
7. subproblemList = delete99(rest(initialList), anElement);
8. resultList = constructList(first(initialList), subproblemList);
9. return resultList;

Now remove “99” from the called subroutine.  That is, change 
delete99() to delete().
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Algorithm for non-recursive 
delete(L, x)
IntList delete(IntList L, int x)
1. IntList newL, tempL;
2. tempL = L; newL = nil;
3. // search for x, copying elements to newL until x is found or tempL is empty
4. while (tempL != nil && x != first(tempL))
5. newL = constructList(first(tempL), newL); //copy element
6. tempL = rest(tempL); // skip copied element
7. If (tempL != nil) // ⇒ x == first(tempL)
8. tempL = rest(tempL); // remove x
9. while (tempL != nil)  // copy remaining elements
10. newL = cons(first(tempL), newL);
11. tempL = rest(tempL);
12. return newL; // x is not in newL
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� Change the procedure with a loop to call a recursive 
procedure without a loop

� Recursive Procedure begins by acting like a WHILE loop
» While(Not Base Case)
» Set up Sub-problem
» Recursive call to continue

� The recursive function may need an additional parameter 
» E.g., to replace an index in a FOR loop of the non-recursive 

procedure. 

Convert a non-recursive procedure 
to a recursive procedure
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Transforming loop into a 
recursive procedure

� Local variables within the loop body
» give the variable only one value in any one pass
» for variables that must be updated, do all the updates at the end of 

the loop body
� Re-expressing a while loop with recursion

» Additional parameters
� Variables updated in the loop become procedure input parameters.

Their initial values at loop entry correspond to the actual parameters 
in the top-level call of the recursive procedure.

� Variables referenced in the loop but not updated may also become
parameters

» The recursive procedure begins by mimicking the while condition 
and returns if the while condition is false
� a break also corresponds to a procedure return

» Continue by updating variables and make the recursive call
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Removing While Loop 
Example

1. int factLoop(int n)
2. int k=1; int f = 1

3. while (k ≤ n)
4. int fnew = f*k;
5. int knew = k+1;
6. k = knew; f = fnew; 
7. return f;

1. int factLoop(int n)
2. return factRec(n, 1, 1);

3. int factRec(int n, int k, int f)  
4. if (k ≤ n)
5. int fnew = f*k;
6. int knew = k+1
7. f = factRec(n, knew, fnew)
8. return f;
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Removing For Loop 
Example

int sequentialSearch(int[] entry, int nEntries, int key)
1. int answer, index;
2. answer = -1; // Assume failure.
3. for (index = 0; index < nEntries; index++)
4.     if (key == entry[index])
5.         answer = index; // Success!
6.         break; // Done!
7. return answer;

Convert the following sequentialSearch() procedure to a 
recursive procedure without a loop
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Recursive Procedure without 
loops e.g.

Call with: sequentialSearchRecursive(entry, 0, nEntries, key)

seqSearchRecursive(int[] entry, int index, int nEntries, int key)
0. int answer;
1. if (index ≥ nEntries)
2.   answer = -1;
3. else if (entry[index] == key)  // index < nEntries
4.   answer = index;
5. else
6.   answer = sequentialSearchRecursive(entry, index+1, nEntries, key);
7. return answer;

� Compare to:   for (index = 0; index < nEntries; index++)
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Analyzing Recursive Procedure 
using Recurrence Equations

� Let n be the size of the problem
� Worst-Case Analysis (for procedure with no loops)

» T(n) = the individual cost for a sequence of blocks
+ the maximum cost for an alternation of blocks
+ the cost of subroutine call, S( f(n) )
+ the cost of recursive procedure call, T( g(n) )

� e.g. sequentialSearchRecursive(), 
» Basic operation is comparison of array element, cost 1
» 1. + max(2., (3. + max(4.,  (5. + 6.)))  + (7.)
» 0  + max(0, (1 + max(0, (0+T(n-1))) + 0
» T(n) = T(n-1) + 1;  T(0) = 0
» => T(n) = n;   T(n) ∈ θ(n)
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Consider binarySearch()

int binarySearch(int[] entry, int first, int last, int key)
1.  if (last < first)
2.       index = -1
3.  else
4.      int middle = (first + last)/2
5.      if (key == entry[middle])
6.         index = middle
7.      else if (key < entry[middle])
8.         index = binarySearch(entry, first, middle -1, key)
9.      else
10.       index = binarySearch(entry, middle +1, last, key)
11. return index
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Evaluate recursive equation
using Recursion Tree

� Evaluate:  T(n) = T(n/2) + T(n/2) + n
» Working copy: T(k) = T(k/2) + T(k/2) + k
» For k=n/2,  T(n/2) = T(n/4) + T(n/4) + (n/2)

Does this equation 
apply to 
binarySearch()?

� [size|cost]
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Recursion Tree e.g.

� To evaluate the total cost of the recursion tree
» sum all the non-recursive costs of all nodes 
» = Sum (rowSum(cost of all nodes at the same depth))

� Determine the maximum depth of the recursion 
tree:
» For our example, at tree depth d, the size parameter is 

n/(2d)
» the size parameter converges to the base case, i.e. case 

1 where n/(2d) = 1 ⇒ d = lg(n)
� The rowSum for each row is n
� Therefore, the total cost, T(n) = n lg(n)
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Proving Correctness of 
Procedures: Proof

� What is a Proof?
» A Proof is a sequence of statements that form a logical argument. 
» Each statement is a complete sentence in the normal grammatical 

sense. 
� Each statement should draw a new conclusion from:

» axiom: well known facts
» assumptions: premises of the theorem you are proving or inductive 

hypothesis
» intermediate conclusions: statements established earlier

� To arrive at the last statement of a proof that must be the 
conclusion of the proposition being proven
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Format of Theorem, Proof 
Format

� A proposition (theorem, lemma, and corollary) is 
represented as:

∀x ∈ W ( A(x) => C(x) )
for all x in W, if A(x) then C(x)

» the set W is called world, 
» A(x) represents the assumptions
» C(x) represents the conclusion, the goal statement
» => is read as “implies”

� Proof sketches provide an outline of a proof
» the strategy, the road map, or the plan. 

� Two-Column Proof Format
» Statement : Justification (supporting facts)
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Induction Proofs

� Induction proofs are a mechanism, often the only 
mechanism, for proving a statement about an infinite set of 
objects.
» Inferring a property of a set based on the property of its objects

� Induction is often done over the set of natural numbers 
{0,1,2,…} 
» starting from 0, then 1, then 2, and so on

� Induction is valid over a set, provided that:
» The set is partially ordered; 

� i.e. an order relationship is defined between some pairs of elements, 
but perhaps not between all pairs.

» There is no infinite chain of decreasing elements in the set. (e.g. 
cannot be set of all integers)
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Induction Proof Schema

Prove:    ∀x ∈ W ( A(x) => C(x) )
� Proof: 

1. The Proof is by induction on x, <description of x>
2. The base case is, cases are, <base-case>
3. <Proof of goal statement with base-case substituted into it, that is, 

C(base-case)>
4. For <x> greater than <base-case>, 

assume that A(y) => C(y) 
holds for all y ∈ W 
such that y < x.

5. <Proof of the goal statement, C(x), exactly as it appears in the 
proposition>.
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Induction Proof Example

� Prove: 
For all n ≥ 0,     i(i+1)/2 = n(n+1)(n+2)/6

� Proof: …
» Left as an exercise for the student ☺

∑
=

n

i 0
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Proving Correctness of 
Procedures

� Things should be made as simple as possible –
but not simpler
» Albert Einstein

� Proving Correctness of procedures is a difficult task in 
general; the trick is to make it as simple as possible. 
» No loops are allowed in the procedure!
» Variable is assigned a value only once!

� Loops are converted into Recursive procedures.
� Additional variables are used to make single-assignment 

(write-once read many) possible. 
» x = y+1 does imply the equation x = y+1 for entire time
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General Correctness Lemma

� If all preconditions hold when the block is entered, 
� then all postconditions hold when the block exits
� And, the procedure will terminate!

» Chains of Inference: Sequence
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Proving Correctness of 
binarySearch()

int binarySearch(int[] entry, int first, int last, int key)
1.  if (last < first)
2.       index = -1
3.  else
4.      int middle = (first + last)/2
5.      if (key == entry[middle])
6.         index = middle
7.      else if (key < entry[middle])
8.         index = binarySearch(entry, first, middle -1, key)
9.      else
10.       index = binarySearch(entry, middle +1, last, key)
11. return index
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Proving Correctness of 
Binary Search

� Lemma    (preconditions => postconditions)
» if binarySearch(entry, first, last, key) is called, and 

the problem size is n = (last – first + 1), for all n≥ 0, and
entry[first], … entry[last] are in nondecreasing order,

» then it returns –1 if key does not occur in entry within the range 
first, …, last, and
it returns index such that key=entry[index] otherwise

� Proof
» The proof is by induction on n, the problem size. 
» The base case in n = 0. 
» In this case, line 1 is true, line 2 is reached, and –1 is returned. (the 

postcondition is true)
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Inductive Proof, continue
� For n > 0, assume that binarySearch(entry, f, l, key) satisfies the lemma on 

problems of size k, such that
0 ≤ k < n, and f and l are any indices such that k = l – f + 1

» For n > 0, line 1 is false, … middle is within the search range (first ≤ middle ≤
last).  

» If line 5 is true, the procedure terminates with index = middle. (the 
postcondition is true)

» If line 5 is false, from (first ≤ middle ≤ last) and def. of n,
(middle – 1) – first + 1 ≤ (n – 1)
last – (middle + 1) + 1 ≤ (n – 1)

» so the inductive hypothesis applies for both recursive calls, 
» If line 7 is true, … the preconditions of binarySearch are satisfied, we can 

assume that the call accomplishes the objective. 
» If line 8 returns a positive index, done.
» If line 8 returns –1, this implies that key is not in entry in the first … middle-

1, also since line 7 is true, key is not in entry in range min… last, so returning 
– 1 is correct (done). 

» If line 7 is false, … similarly the postconditions are true. (done!)


