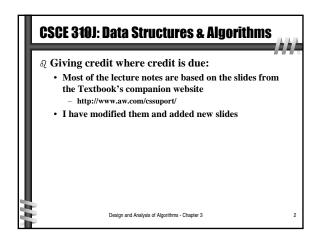
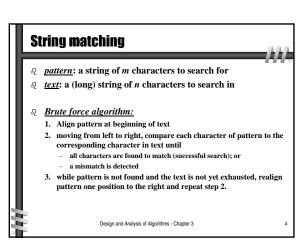
Chapter 3

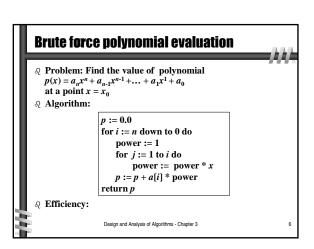
CSCE 310J: Data Structures & Algorithms Brute Force Dr. Steve Goddard goddard@cse.unl.edu http://www.cse.unl.edu/~goddard/Courses/CSCE310J



A straightforward approach usually based on problem statement and definitions Examples: 1. Computing a^n (a > 0, n a nonnegative integer) 2. Computing n! 3. Multiply two n by n matrices 4. Selection sort 5. Sequential search Design and Analysis of Algorithms - Chapter 3



Brute force string matching – Examples: 1. Pattern: 001011 Text: 1001010110100110101111010 2. Pattern: happy Text: It is never too late to have a happy childhood. Number of comparisons: Efficiency: Design and Analysis of Algorithms - Chapter 3



Chapter 3

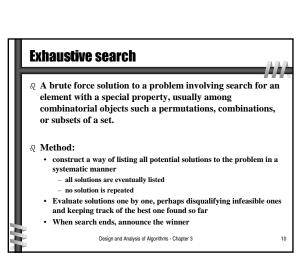
Polynomial evaluation: improvement We can do better by evaluating from right to left: Algorithm: p := a[0]power := 1 for i := 1 to n do power := power * x p := p + a[i] * powerreturn pDesign and Analysis of Algorithms - Chapter 3

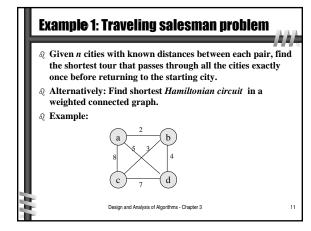
More brute force algorithm examples: ② Closest pair • Problem: find closest among n points in k-dimensional space • Algorithm: Compute distance between each pair of points • Efficiency: ③ Convex hull • Problem: find smallest convex polygon enclosing n points on the plane • Algorithm: For each pair of points p₁ and p₂ determine whether all other points lie to the same side of the straight line through p₁ and p₂ • Efficiency:

Design and Analysis of Algorithms - Chapter 3

Strengths: • wide applicability • simplicity • yields reasonable algorithms for some important problems - searching - string matching - matrix multiplication • yields standard algorithms for simple computational tasks - sum/product of n numbers - finding max/min in a list Strength Weaknesses: • rarely yields efficient algorithms • some brute force algorithms unacceptably slow • not as constructive/creative as some other design techniques

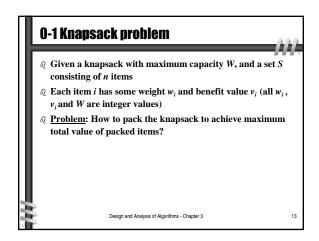
Design and Analysis of Algorithms - Chapter 3

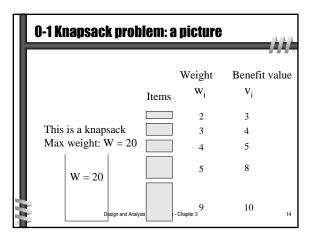




Traveling salesman by exhaustive search	
શ <u>Tour</u>	Cost .
$\partial a \rightarrow b \rightarrow c \rightarrow d \rightarrow a$	2+3+7+5 = 17
$\emptyset \ a \rightarrow b \rightarrow d \rightarrow c \rightarrow a$	2+4+7+8=21
$\emptyset \ a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$	8+3+4+5=20
$\emptyset \ a \rightarrow c \rightarrow d \rightarrow b \rightarrow a$	8+7+4+2=21
$\emptyset \ a{\rightarrow} d{\rightarrow} b{\rightarrow} c{\rightarrow} a$	5+4+3+8=20
ର a→d→c→b→a	5+7+3+2 = 17
∂ Efficiency:	
Design and Ana	alysis of Algorithms - Chapter 3 12

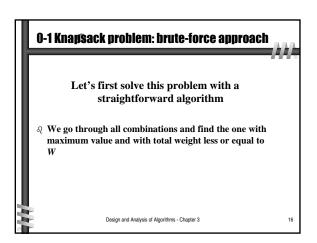
Chapter 3

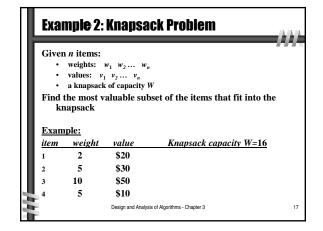


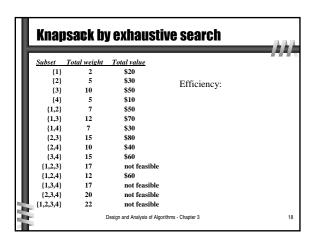


O-1 Knapsack problem \mathcal{Q} Problem, in other words, is to find $\max \sum_{i \in T} v_i$ subject to $\sum_{i \in T} w_i \leq W$ \mathcal{Q} The problem is called a "0-1" problem, because each item must be entirely accepted or rejected. \mathcal{Q} In the "Fractional Knapsack Problem," we can take fractions of items.

Design and Analysis of Algorithms - Chapter 3







Chapter 3

0-1 Knapsack problem: brute-force approach

ର Algorithm:

- We go through all combinations and find the one with maximum value and with total weight less or equal to ${\cal W}$

ର Efficiency:

- Since there are n items, there are 2^n possible combinations of items.
- Thus, the running time will be $O(2^n)$

Design and Analysis of Algorithms - Chapter 3

Final comments:

 ${\it Q}$ Exhaustive search algorithms run in a realistic amount of time <u>only on very small instances</u>

 $\ensuremath{\mathfrak{Q}}$ In many cases there are much better alternatives!

- · Euler circuits
- · shortest paths
- · minimum spanning tree
- · assignment problem

 $\ensuremath{\mathfrak{Q}}$ In some cases exhaustive search (or variation) is the only known solution

Design and Analysis of Algorithms - Chapter 3

20