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� Giving credit where credit is due:
• Most of the lecture notes are based on the slides from 

the Textbook’s companion website
– http://www.aw.com/cssupor t/

• I  have modified them and added new slides
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A straightforward approach usually based on problem 
statement and definitions

Examples:
1. Computing an (a > 0, n a nonnegative integer)

2. Computing n!

3. Multiply two n by n matr ices

4. Selection sor t

5. Sequential search
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� pattern: a str ing of m characters to search for
� text: a (long) str ing of n characters to search in

� Brute force algorithm:
1. Align pattern at beginning of text
2. moving from left to r ight, compare each character  of pattern to the 

corresponding character  in text until
– all characters are found to match (successful search); or

– a mismatch is detected

3. while pattern is not found and the text is not yet exhausted, realign 
pattern one position to the r ight and repeat step 2.
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1. Pattern:     ����������������������������

Text: ����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

2. Pattern: � � � � �� � � � �� � � � �� � � � �
Text: � 	 �
 � �� 
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 � �� 
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Number  of compar isons:

Efficiency:
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� Problem: Find the value of  polynomial                          
p(x) = anxn + an-1xn-1 +… + a1x1 + a0                                                             
at a point x = x0

� Algor ithm: 

� Efficiency:

p := 0.0
for  i := n down to 0 do

power  := 1
for   j := 1 to i do

power  :=  power  * x
p := p + a[i] *  power  

return p
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� We can do better  by evaluating from r ight to left:
� Algor ithm: 

� Efficiency:

p := a[0]
power  := 1
for  i :=  1 to n do

power  :=  power  * x
p := p + a[i] *  power  

return p
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� Closest pair
• Problem: find closest among n points in k-dimensional space

• Algor ithm: Compute distance between each pair  of points
• Efficiency: 

� Convex hull
• Problem: find smallest convex polygon enclosing n points on the 

plane 

• Algor ithm: For  each pair  of points p1 and p2 determine whether  all 
other  points lie to the same side of the straight line through p1 and 
p2

• Efficiency: 
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� Strengths:
• wide applicability
• simplicity
• yields reasonable algor ithms for  some impor tant problems

– searching 
– str ing matching
– matr ix multiplication

• yields standard algor ithms for  simple computational tasks
– sum/product of n numbers
– finding max/min in a list

� Weaknesses:
• rarely yields efficient algor ithms
• some brute force algor ithms unacceptably slow
• not as constructive/creative as some other  design techniques
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� A brute force solution to a problem involving search for  an 
element with a special proper ty, usually among 
combinator ial objects such a permutations, combinations, 
or  subsets of a set.

� Method:
• construct a way of listing all potential solutions to the problem in a 

systematic manner
– all solutions are eventually listed

– no solution is repeated

• Evaluate solutions one by one, perhaps disqualifying infeasible ones 
and keeping track of the best one found so far

• When search ends, announce the winner
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� Given n cities with known distances between each pair , find 
the shor test tour  that passes through all the cities exactly 
once before returning to the star ting city.

� Alternatively: Find shor test Hamiltonian circuit in a 
weighted connected graph.

� Example:

a b

c d

8

2

7

5 3
4
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� Tour                                                          Cost                           .                          

� a� b � c� d� a                         2+3+7+5 = 17
� a� b � d � c� a                         2+4+7+8 = 21
� a� c� b � d� a                         8+3+4+5 = 20

� a� c� d � b� a                         8+7+4+2 = 21
� a� d � b � c� a                         5+4+3+8 = 20
� a� d � c� b� a                         5+7+3+2 = 17

� Efficiency:
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� Given a knapsack with maximum capacity W, and a set S
consisting of n items

� Each item i has some weight wi and benefit value vi (all wi , 
vi and W are integer values)

� Problem: How to pack the knapsack to achieve maximum 
total value of packed items?

�*��+�� ���(� 
�%���

Design and Analysis of Algorithms - Chapter 3 14

W = 20

wi vi

109

85

54

43

32

Weight Benefit value

This is a knapsack
Max weight: W = 20

Items
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� Problem, in other  words, is to find

��
∈∈

≤
Ti

i
Ti

i Wwv  subject to max
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� The problem is called a “ 0-1”  problem, 
because each item must be entirely accepted or  
rejected.

� In the “ Fractional Knapsack Problem,”  we can 
take fractions of items. 
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Let’s first solve this problem with a 
straightforward algor ithm

� We go through all combinations and find the one with 
maximum value and with total weight less or  equal to 
W
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Given n items:
• weights:    w1   w2 …   wn

• values:    v1   v2 …   vn

• a knapsack of capacity W 

Find the most valuable subset of the items that fit into the 
knapsack

Example:
item      weight      value              Knapsack capacity W=16
1 2              $20
2 5              $30
3 10              $50
4 5              $10
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Subset      Total weight     Total value
{1}               2                  $20
{2}               5                  $30
{3}             10                  $50
{4}               5                  $10

{1,2}               7                  $50
{1,3}             12                  $70
{1,4}              7                   $30
{2,3}             15                  $80
{2,4}             10                  $40
{3,4}             15                  $60

{1,2,3}             17                  not feasible
{1,2,4}             12                  $60
{1,3,4}             17                  not feasible
{2,3,4}             20                  not feasible

{1,2,3,4}             22                  not feasible

Efficiency:
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� Algor ithm:
• We go through all combinations and find the one 

with maximum value and with total weight less or  
equal to W

� Efficiency:
• Since there are n items, there are 2n possible 

combinations of items.
• Thus, the running time will be O(2n)
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� Exhaustive search algor ithms run in a realistic 
amount of time only on very small instances

� In many cases there are much better  alternatives! 
• Euler  circuits
• shor test paths
• minimum spanning tree
• assignment problem

� In some cases exhaustive search (or  var iation) is 
the only known solution


