
1

Design and Analysis of Algorithms Chapter 3

Design and Analysis of Algorithms - Chapter 3 1

http://www.cse.unl.edu/~goddard/Courses/CSCE310J

Brute Force

Dr. Steve Goddard
goddard@cse.unl.edu

���������	�
������
����
���������
�����

Design and Analysis of Algorithms - Chapter 3 2

� Giving credit where credit is due:
• Most of the lecture notes are based on the slides from

the Textbook’s companion website
– http://www.aw.com/cssupor t/

• I have modified them and added new slides

���������	�
������
����
���������
�����

Design and Analysis of Algorithms - Chapter 3 3

�
������
��

A straightforward approach usually based on problem
statement and definitions

Examples:
1. Computing an (a > 0, n a nonnegative integer)

2. Computing n!

3. Multiply two n by n matr ices

4. Selection sor t

5. Sequential search

Design and Analysis of Algorithms - Chapter 3 4

��
������������

� pattern: a str ing of m characters to search for
� text: a (long) str ing of n characters to search in

� Brute force algorithm:
1. Align pattern at beginning of text
2. moving from left to r ight, compare each character of pattern to the

corresponding character in text until
– all characters are found to match (successful search); or

– a mismatch is detected

3. while pattern is not found and the text is not yet exhausted, realign
pattern one position to the r ight and repeat step 2.

Design and Analysis of Algorithms - Chapter 3 5

�
������
�����
�������������� ���� ���	

1. Pattern: ����������������������������

Text: ��

2. Pattern: � � � � �� � � � �� � � � �� � � � �
Text: � 	 �
 � ��
 �
 � �	 � � �� � 	
 �	 � �� � �
 �� �� � � � � �� �
 � � � � � � �� 	 �
 � ��
 �
 � �	 � � �� � 	
 �	 � �� � �
 �� �� � � � � �� �
 � � � � � � �� 	 �
 � ��
 �
 � �	 � � �� � 	
 �	 � �� � �
 �� �� � � � � �� �
 � � � � � � �� 	 �
 � ��
 �
 � �	 � � �� � 	
 �	 � �� � �
 �� �� � � � � �� �
 � � � � � � �

Number of compar isons:

Efficiency:

Design and Analysis of Algorithms - Chapter 3 6

�
������
��� ��!��������"��������

� Problem: Find the value of polynomial
p(x) = anxn + an-1xn-1 +… + a1x1 + a0
at a point x = x0

� Algor ithm:

� Efficiency:

p := 0.0
for i := n down to 0 do

power := 1
for j := 1 to i do

power := power * x
p := p + a[i] * power

return p

2

Design and Analysis of Algorithms Chapter 3

Design and Analysis of Algorithms - Chapter 3 7

#��!��������"��������	���
�"�����

� We can do better by evaluating from r ight to left:
� Algor ithm:

� Efficiency:

p := a[0]
power := 1
for i := 1 to n do

power := power * x
p := p + a[i] * power

return p

Design and Analysis of Algorithms - Chapter 3 8

$�
��%
������
�������
��������� ���	

� Closest pair
• Problem: find closest among n points in k-dimensional space

• Algor ithm: Compute distance between each pair of points
• Efficiency:

� Convex hull
• Problem: find smallest convex polygon enclosing n points on the

plane

• Algor ithm: For each pair of points p1 and p2 determine whether all
other points lie to the same side of the straight line through p1 and
p2

• Efficiency:

Design and Analysis of Algorithms - Chapter 3 9

�
������
�����
���������&�'��(������

� Strengths:
• wide applicability
• simplicity
• yields reasonable algor ithms for some impor tant problems

– searching
– str ing matching
– matr ix multiplication

• yields standard algor ithms for simple computational tasks
– sum/product of n numbers
– finding max/min in a list

� Weaknesses:
• rarely yields efficient algor ithms
• some brute force algor ithms unacceptably slow
• not as constructive/creative as some other design techniques

Design and Analysis of Algorithms - Chapter 3 10

��������"�����
��

� A brute force solution to a problem involving search for an
element with a special proper ty, usually among
combinator ial objects such a permutations, combinations,
or subsets of a set.

� Method:
• construct a way of listing all potential solutions to the problem in a

systematic manner
– all solutions are eventually listed

– no solution is repeated

• Evaluate solutions one by one, perhaps disqualifying infeasible ones
and keeping track of the best one found so far

• When search ends, announce the winner

Design and Analysis of Algorithms - Chapter 3 11

���� ����	�)
�"���������������
�%���

� Given n cities with known distances between each pair , find
the shor test tour that passes through all the cities exactly
once before returning to the star ting city.

� Alternatively: Find shor test Hamiltonian circuit in a
weighted connected graph.

� Example:

a b

c d

8

2

7

5 3
4

Design and Analysis of Algorithms - Chapter 3 12

)
�"���������������%!���������"�����
��

� Tour Cost .

� a� b � c� d� a 2+3+7+5 = 17
� a� b � d � c� a 2+4+7+8 = 21
� a� c� b � d� a 8+3+4+5 = 20

� a� c� d � b� a 8+7+4+2 = 21
� a� d � b � c� a 5+4+3+8 = 20
� a� d � c� b� a 5+7+3+2 = 17

� Efficiency:

3

Design and Analysis of Algorithms Chapter 3

Design and Analysis of Algorithms - Chapter 3 13

� Given a knapsack with maximum capacity W, and a set S
consisting of n items

� Each item i has some weight wi and benefit value vi (all wi ,
vi and W are integer values)

� Problem: How to pack the knapsack to achieve maximum
total value of packed items?

�*��+�� ���(�
�%���

Design and Analysis of Algorithms - Chapter 3 14

W = 20

wi vi

109

85

54

43

32

Weight Benefit value

This is a knapsack
Max weight: W = 20

Items

�*��+�� ���(�
�%���	��� ����
�

Design and Analysis of Algorithms - Chapter 3 15

� Problem, in other words, is to find

��
∈∈

≤
Ti

i
Ti

i Wwv subject to max

�*��+�� ���(�
�%���

� The problem is called a “ 0-1” problem,
because each item must be entirely accepted or
rejected.

� In the “ Fractional Knapsack Problem,” we can
take fractions of items.

Design and Analysis of Algorithms - Chapter 3 16

Let’s first solve this problem with a
straightforward algor ithm

� We go through all combinations and find the one with
maximum value and with total weight less or equal to
W

�*��+�� ���(�
�%���	�%
���*��
����
����

Design and Analysis of Algorithms - Chapter 3 17

���� ���,	�+�� ���(�#
�%���

Given n items:
• weights: w1 w2 … wn

• values: v1 v2 … vn

• a knapsack of capacity W

Find the most valuable subset of the items that fit into the
knapsack

Example:
item weight value Knapsack capacity W=16
1 2 $20
2 5 $30
3 10 $50
4 5 $10

Design and Analysis of Algorithms - Chapter 3 18

+�� ���(�%!���������"�����
��

Subset Total weight Total value
{1} 2 $20
{2} 5 $30
{3} 10 $50
{4} 5 $10

{1,2} 7 $50
{1,3} 12 $70
{1,4} 7 $30
{2,3} 15 $80
{2,4} 10 $40
{3,4} 15 $60

{1,2,3} 17 not feasible
{1,2,4} 12 $60
{1,3,4} 17 not feasible
{2,3,4} 20 not feasible

{1,2,3,4} 22 not feasible

Efficiency:

4

Design and Analysis of Algorithms Chapter 3

Design and Analysis of Algorithms - Chapter 3 19

� Algor ithm:
• We go through all combinations and find the one

with maximum value and with total weight less or
equal to W

� Efficiency:
• Since there are n items, there are 2n possible

combinations of items.
• Thus, the running time will be O(2n)

�*��+�� ���(�
�%���	�%
���*��
����
����

Design and Analysis of Algorithms - Chapter 3 20

��������������	

� Exhaustive search algor ithms run in a realistic
amount of time only on very small instances

� In many cases there are much better alternatives!
• Euler circuits
• shor test paths
• minimum spanning tree
• assignment problem

� In some cases exhaustive search (or var iation) is
the only known solution

