
Data Types and Addressing Modes 29

This section describes data types and addressing modes available to programmers of the Intel
Architecture processors.

29.1 Fundamental Data Types

The fundamental data types of the Intel Architecture are bytes, words, doublewords, and
quadwords (see Figure 29-1). A byte is eight bits, a word is 2 bytes (16 bits), a doubleword is 4
bytes (32 bits), and a quadword is 8 bytes (64 bits).

Figure 29-2 shows the byte order of each of the fundamental data types when referenced as
operands in memory. The low byte (bits 0 through 7) of each data type occupies the lowest address
in memory and that address is also the address of the operand.

29.1.1 Alignment of Words, Doublewords, and Quadwords

Words, doublewords, and quadwords do not need to be aligned in memory on natural boundaries.
(The natural boundaries for words, double words, and quadwords are even-numbered addresses,
addresses evenly divisible by four, and addresses evenly divisible by eight, respectively.) However,
to improve the performance of programs, data structures (especially stacks) should be aligned on
natural boundaries whenever possible. The reason for this is that the processor requires two
memory accesses to make an unaligned memory access; whereas, aligned accesses require only
one memory access. A word or doubleword operand that crosses a 4-byte boundary or a quadword
operand that crosses an 8-byte boundary is considered unaligned and requires two separate
memory bus cycles to access it; a word that starts on an odd address but does not cross a word
boundary is considered aligned and can still be accessed in one bus cycle.

Figure 29-1. Fundamental Data Types

0

63

Quadword

0

Word

31

0

Doubleword

15

0

Byte

7

78
N

Low WordHigh Word

Low DoublewordHigh Doubleword

1516

3132

N+1 N

N

N+2

N+4

N

Low
Byte

High
Byte
Embedded Pentium® Processor Family 29-505

Data Types and Addressing Modes

2,768
29.2 Numeric, Pointer, Bit Field, and String Data Types

Although bytes, words, and doublewords are the fundamental data types of the Intel Architecture,
some instructions support additional interpretations of these data types to allow operations to be
performed on numeric data types (signed and unsigned integers and BCD integers). See
Figure 29-3. Also, some instructions recognize and operate on additional pointer, bit field, and
string data types. The following sections describe these additional data types.

29.2.1 Integers

Integers are signed binary numbers held in a byte, word, or doubleword. All operations assume a
two’s complement representation. The sign bit is located in bit 7 in a byte integer, bit 15 in a word
integer, and bit 31 in a doubleword integer. The sign bit is set for negative integers and cleared for
positive integers and zero. Integer values range from –128 to +127 for a byte integer, from –3
to +32,767 for a word integer, and from –231 to +231 – 1 for a doubleword integer.

Figure 29-2. Bytes, Words, Doublewords and Quadwords in Memory

EH

DH7AH

CHFEH

BH06H

AH36H

9H1FH

8HA4H

7H23H

6H0BH

5H

4H

3H74H

2HCBH

1H31H

0H

Quadword at Address 6H
Contains 7AFE06361FA4230BH

Doubleword at Address AH
Contains 7AFE0636H

Word at Address BH
Contains FE06H

Byte at Address 9H
Contains 1FH

Word at Address 6H
Contains 230BH

Word at Address 1H
Contains CB31H

Word at Address 2H
Contains 74CBH
29-506 Embedded Pentium® Processor Family

Data Types and Addressing Modes
29.2.2 Unsigned Integers

Unsigned integers are unsigned binary numbers contained in a byte, word, or doubleword.
Unsigned integer values range from 0 to 255 for an unsigned byte integer, from 0 to 65,535 for an
unsigned word integer, and from 0 to 232 – 1 for an unsigned doubleword integer. Unsigned
integers are sometimes referred to as ordinals.

Figure 29-3. Numeric, Pointer, and Bit Field Data Types

047

Far Pointer or Logical Address

Segment Selector

32 31

Offset

0

Near Pointer

31
Offset or Linear Address

Bit Field

Field Length

0

Doubleword Unsigned Integer

31

0

Packed BCD Integers

7
BCDBCDBCDBCDBCDBCD
34

. . . .

0

BCD Integers

7
BCDXBCDXBCDX
34

. . . .

0

Word Unsigned Integer

15

0

Byte Unsigned Integer

7

0

Doubleword Signed Integer

31 30

0

Word Signed Integer

15 14

0

Byte Signed Integer

7 6

Sign

Sign

Sign

Least

Bit
Significant
Embedded Pentium® Processor Family 29-507

Data Types and Addressing Modes

ata

e
be
29.2.3 BCD Integers

Binary-coded decimal integers (BCD integers) are unsigned 4-bit integers with valid values
ranging from 0 to 9. BCD integers can be unpacked (one BCD digit per byte) or packed (two BCD
digits per byte). The value of an unpacked BCD integer is the binary value of the low half-byte
(bits 0 through 3). The high half-byte (bits 4 through 7) can be any value during addition and
subtraction, but must be zero during multiplication and division.

Packed BCD integers allow two BCD digits to be contained in one byte. Here, the digit in the high
half-byte is more significant than the digit in the low half-byte.

29.2.4 Pointers

Pointers are addresses of locations in memory. The Pentium Pro processor recognizes two types of
pointers: a near pointer (32 bits) and a far pointer (48 bits). A near pointer is a 32-bit offset (also
called an effective address) within a segment. Near pointers are used for all memory references in
a flat memory model or for references in a segmented model where the identity of the segment
being accessed is implied. A far pointer is a 48-bit logical address, consisting of a 16-bit segment
selector and a 32-bit offset. Far pointers are used for memory references in a segmented memory
model where the identity of a segment being accessed must be specified explicitly.

29.2.5 Bit Fields

A bit field is a contiguous sequence of bits. It can begin at any bit position of any byte in memory
and can contain up to 32 bits.

29.2.6 Strings

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin at
any bit position of any byte and can contain up to 232 – 1 bits. A byte string can contain bytes,
words, or doublewords and can range from zero to 232 – 1 bytes (4 gigabytes).

29.2.7 Floating-Point Data Types

The processor’s floating-point instructions recognize a set of real, integer, and BCD integer d
types. See Floating-Point Data Types and Formats, for a description of FPU data types.

29.2.8 MMX™ Technology Data Types

Intel Architecture processors that implement the Intel MMX technology recognize a set of packed
64-bit data types. See MMX™ Data Types, for a description of the MMX data types.

29.3 Operand Addressing

An Intel Architecture machine-instruction acts on zero or more operands. Some operands ar
specified explicitly in an instruction and others are implicit to an instruction. An operand can
located in any of the following places:
29-508 Embedded Pentium® Processor Family

Data Types and Addressing Modes
• The instruction itself (an immediate operand).

• A register.

• A memory location.

• An I/O port.

29.3.1 Immediate Operands

Some instructions use data encoded in the instruction itself as a source operand. These operands are
called immediate operands (or simply immediates). For example, the following ADD instruction
adds an immediate value of 14 to the contents of the EAX register:

ADD EAX, 14

All the arithmetic instructions (except the DIV and IDIV instructions) allow the source operand to
be an immediate value. The maximum value allowed for an immediate operand varies among
instructions, but can never be greater than the maximum value of an unsigned doubleword integer
(232).

29.3.2 Register Operands

Source and destination operands can be located in any of the following registers, depending on the
instruction being executed:

• The 32-bit general-purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP).

• The 16-bit general-purpose registers (AX, BX, CX, DX, SI, DI, SP, or BP).

• The 8-bit general-purpose registers (AH, BH, CH, DH, AL, BL, CL, or DL).

• The segment registers (CS, DS, SS, ES, FS, and GS).

• The EFLAGS register.

• System registers, such as the global descriptor table (GDTR) or the interrupt descriptor table
register (IDTR).

Some instructions (such as the DIV and MUL instructions) use quadword operands contained in a
pair of 32-bit registers. Register pairs are represented with a colon separating them. For example, in
the register pair EDX:EAX, EDX contains the high order bits and EAX contains the low order bits
of a quadword operand.

Several instructions (such as the PUSHFD and POPFD instructions) are provided to load and store
the contents of the EFLAGS register or to set or clear individual flags in this register. Other
instructions (such as the Jcc instructions) use the state of the status flags in the EFLAGS register as
condition codes for branching or other decision making operations.

The processor contains a selection of system registers that are used to control memory
management, interrupt and exception handling, task management, processor management, and
debugging activities. Some of these system registers are accessible by an application program, the
operating system, or the executive through a set of system instructions. When accessing a system
register with a system instruction, the register is generally an implied operand of the instruction.
Embedded Pentium® Processor Family 29-509

Data Types and Addressing Modes

t is

 is a
ot be
29.3.3 Memory Operands

Source and destination operands in memory are referenced by means of a segment selector and an
offset (see Figure 29-4). The segment selector specifies the segment containing the operand and the
offset (the number of bytes from the beginning of the segment to the first byte of the operand)
specifies the linear or effective address of the operand.

29.3.3.1 Specifying a Segment Selector

The segment selector can be specified either implicitly or explicitly. The most common method of
specifying a segment selector is to load it in a segment register and then allow the processor to
select the register implicitly, depending on the type of operation being performed. The processor
automatically chooses a segment according to the rules given in Table 29-1.

When storing data in or loading data from memory, the DS segment default can be overridden to
allow other segments to be accessed. Within an assembler, the segment override is generally
handled with a colon “:” operator. For example, the following MOV instruction moves a value
from register EAX into the segment pointed to by the ES register. The offset into the segmen
contained in the EBX register:

MOV ES:[EBX], EAX;

(At the machine level, a segment override is specified with a segment-override prefix, which
byte placed at the beginning of an instruction.) The following default segment selections cann
overridden:

• Instruction fetches must be made from the code segment.

• Destination strings in string instructions must be stored in the data segment pointed to by the
ES register.

• Push and pop operations must always reference the SS segment.

Figure 29-4. Memory Operand Address

Offset (or Linear Address)

015
Segment

310

Selector

Table 29-1. Default Segment Selection Rules

Type of
Reference

Register
Used

Segment
Used Default Selection Rule

Instructions CS Code Segment All instruction fetches.

Stack SS Stack Segment
All stack pushes and pops.
Any memory reference which uses the ESP or EBP
register as a base register.

Local Data DS Data Segment All data references, except when relative to stack or
string destination.

Destination
Strings ES

Data Segment
pointed to with
the ES register

Destination of string instructions.
29-510 Embedded Pentium® Processor Family

Data Types and Addressing Modes

ception

owing
Some instructions require a segment selector to be specified explicitly. In these cases, the 16-bit
segment selector can be located in a memory location or in a 16-bit register. For example, the
following MOV instruction moves a segment selector located in register BX into segment register
DS:

MOV DS, BX

Segment selectors can also be specified explicitly as part of a 48-bit far pointer in memory. Here,
the first doubleword in memory contains the offset and the next word contains the segment
selector.

29.3.3.2 Specifying an Offset

The offset part of a memory address can be specified either directly as an static value (called a
displacement) or through an address computation made up of one or more of the following
components:

• Displacement—An 8-, 16-, or 32-bit value.

• Base—The value in a general-purpose register.

• Index—The value in a general-purpose register.

• Scale factor—A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective address. Each of
these components can have either a positive or negative (2s complement) value, with the ex
of the scaling factor. Figure 29-5 shows all the possible ways that these components can be
combined to create an effective address in the selected segment.

The uses of general-purpose registers as base or index components are restricted in the foll
manner:

• The ESP register cannot be used as an index register.

• When the ESP or EBP register is used as the base, the SS segment is the default segment. In all
other cases, the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and any of these
components can be null. A scale factor may be used only when an index also is used. Each possible
combination is useful for data structures commonly used by programmers in high-level languages
and assembly language. The following addressing modes suggest uses for common combinations
of address components.

Figure 29-5. Offset (or Effective Address) Computation

Offset = Base + (Index ∗ Scale) + Displacement

Base

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
EBP
ESI
EDI

1 None

2

3

4

8-bit

16-bit

32-bit

Index Scale Displacement

*+ +
Embedded Pentium® Processor Family 29-511

Data Types and Addressing Modes

nt
s the

e

tion
. Here,
 stack

is 2, 4,

pt into

s the

array

gister,
 of the

nguage
HL
Displacement

A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an absolute
or static address. It is commonly used to access a statically allocated scalar operand.

Base

A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

Base + Displacement

A base register and a displacement can be used together for two distinct purposes:

• As an index into an array when the element size is not 2, 4, or 8 bytes—The displaceme
component encodes the static offset to the beginning of the array. The base register hold
results of a calculation to determine the offset to a specific element within the array.

• To access a field of a record—The base register holds the address of the beginning of th
record, while the displacement is an static offset to the field.

An important special case of this combination is access to parameters in a procedure activa
record. A procedure activation record is the stack frame created when a procedure is entered
the EBP register is the best choice for the base register, because it automatically selects the
segment. This is a compact encoding for this common function.

(Index ∗ Scale) + Displacement

This address mode offers an efficient way to index into a static array when the element size
or 8 bytes. The displacement locates the beginning of the array, the index register holds the
subscript of the desired array element, and the processor automatically converts the subscri
an index by applying the scaling factor.

Base + Index + Displacement

Using two registers together supports either a two-dimensional array (the displacement hold
address of the beginning of the array) or one of several instances of an array of records (the
displacement is an offset to a field within the record).

Base + (Index ∗ Scale) + Displacement

Using all the addressing components together allows efficient indexing of a two-dimensional
when the elements of the array are 2, 4, or 8 bytes in size.

29.3.3.3 Assembler and Compiler Addressing Modes

At the machine-code level, the selected combination of displacement, base register, index re
and scale factor is encoded in an instruction. All assemblers permit a programmer to use any
allowable combinations of these addressing components to address operands. High-level la
(HLL) compilers will select an appropriate combination of these components based on the H
construct a programmer defines.
29-512 Embedded Pentium® Processor Family

Data Types and Addressing Modes
29.3.4 I/O Port Addressing

The processor supports an I/O address space that contains up to 65,536 8-bit I/O ports. Ports that
are 16-bit and 32-bit may also be defined in the I/O address space. An I/O port can be addressed
with either an immediate operand or a value in the DX register. See “Input/Output” for more
information about I/O port addressing.
Embedded Pentium® Processor Family 29-513

	Data Types and Addressing Modes 29
	29.1 Fundamental Data Types
	Figure 29�1. Fundamental Data Types
	29.1.1 Alignment of Words, Doublewords, and Quadwords
	Figure 29�2. Bytes, Words, Doublewords and Quadwords in Memory

	29.2 Numeric, Pointer, Bit Field, and String Data Types
	29.2.1 Integers
	Figure 29�3. Numeric, Pointer, and Bit Field Data Types

	29.2.2 Unsigned Integers
	29.2.3 BCD Integers
	29.2.4 Pointers
	29.2.5 Bit Fields
	29.2.6 Strings
	29.2.7 Floating-Point Data Types
	29.2.8 MMX™ Technology Data Types

	29.3 Operand Addressing
	29.3.1 Immediate Operands
	29.3.2 Register Operands
	29.3.3 Memory Operands
	Figure 29�4. Memory Operand Address
	29.3.3.1 Specifying a Segment Selector
	Table 29�1. Default Segment Selection Rules

	29.3.3.2 Specifying an Offset
	Figure 29�5. Offset (or Effective Address) Computation

	29.3.3.3 Assembler and Compiler Addressing Modes

	29.3.4 I/O Port Addressing

