
Intel Architecture Software Developer’s Manual 27-471

Basic Execution Environment 27

This chapter describes the basic execution environment of an Intel Architecture processor as seen
by assembly-language programmers. It describes how the processor executes instructions and how
it stores and manipulates data. The parts of the execution environment described here include
memory (the address space), the general-purpose data registers, the segment registers, the
EFLAGS register, and the instruction pointer register.

The execution environment for the floating-point unit (FPU) is described in “Floating-Point Unit”.

27.1 Modes of Operation

The Intel Architecture supports three operating modes: protected mode, real-address mode, and
system management mode. The operating mode determines which instructions and architectural
features are accessible:

• Protected mode. The native state of the processor. In this mode all instructions and
architectural features are available, providing the highest performance and capability. This is
the recommended mode for all new applications and operating systems.

• Among the capabilities of protected mode is the ability to directly execute “real-address
mode” 8086 software in a protected, multi-tasking environment. This feature is called virtual-
8086 mode, although it is not actually a processor mode. Virtual-8086 mode is actually a
protected mode attribute that can be enabled for any task.

• Real-address mode. Provides the programming environment of the Intel 8086 processor with
a few extensions (such as the ability to switch to protected or system management mode). The
processor is placed in real-address mode following power-up or a reset.

• System management mode. A standard architectural feature unique to all Intel processors,
beginning with the Intel386 SL processor. This mode provides an operating system or
executive with a transparent mechanism for implementing platform-specific functions such as
power management and system security. The processor enters SMM when the external SMM
interrupt pin (SMI#) is activated or an SMI is received from the advanced programmable
interrupt controller (APIC). In SMM, the processor switches to a separate address space while
saving the entire context of the currently running program or task. SMM-specific code may
then be executed transparently. Upon returning from SMM, the processor is placed back into
its state prior to the system management interrupt.

The basic execution environment is the same for each of these operating modes, as is described in
the remaining sections of this chapter.

27.2 Overview of the Basic Execution Environment

Any program or task running on an Intel Architecture processor is given a set of resources for
executing instructions and for storing code, data, and state information. These resources (shown in
Figure 27-1) include an address space of up to 232 bytes, a set of general data registers, a set of

27-472 Intel Architecture Software Developer’s Manual

Basic Execution Environment

segment registers, and a set of status and control registers. When a program calls a procedure, a
procedure stack is added to the execution environment. (Procedure calls and the procedure stack
implementation are described in Chapter 4, Procedure Calls, Interrupts, and Exceptions.)

27.3 Memory Organization

The memory that the processor addresses on its bus is called physical memory. Physical memory
is organized as a sequence of 8-bit bytes. Each byte is assigned a unique address, called a physical
address. The physical address space ranges from zero to a maximum of 232 – 1 (4 gigabytes).

Virtually any operating system or executive designed to work with an Intel Architecture processor
will use the processor’s memory management facilities to access memory. These facilities provide
features such as segmentation and paging, which allow memory to be managed efficiently and
reliably. Memory management is described in detail in Chapter 3, Protected-Mode Memory
Management, of the Intel Architecture Software Developer’s Manual, Volume 3. The following
paragraphs describe the basic methods of addressing memory when memory management is used.

When employing the processor’s memory management facilities, programs do not directly address
physical memory. Instead, they access memory using any of three memory models: flat,
segmented, or real-address mode.

With the flat memory model (see Figure 27-2), memory appears to a program as a single,
continuous address space, called a linear address space. Code (a program’s instructions), data, and
the procedure stack are all contained in this address space. The linear address space is byte
addressable, with addresses running contiguously from 0 to 232 − 1. An address for any byte in the
linear address space is called a linear address.

Figure 27-1. Pentium® Pro Processor Basic Execution Environment

0

232 −1

Eight 32-bit

32-bits

32-bits

General-Purpose
Registers

Segment Registers

EFLAGS Register

EIP (Instruction
Pointer Register)

Space*
Address

*The address space can be flat or segmented.

Six 16-bit
Registers

Registers

Intel Architecture Software Developer’s Manual 27-473

Basic Execution Environment

With the segmented memory model, memory appears to a program as a group of independent
address spaces called segments. When using this model, code, data, and stacks are typically
contained in separate segments. To address a byte in a segment, a program must issue a logical
address, which consists of a segment selector and an offset. (A logical address is often referred to
as a far pointer.) The segment selector identifies the segment to be accessed and the offset
identifies a byte in the address space of the segment. The programs running on an Intel
Architecture processor can address up to 16,383 segments of different sizes and types, and each
segment can be as large as 232 bytes.

Internally, all the segments that are defined for a system are mapped into the processor’s linear
address space. So, the processor translates each logical address into a linear address to access a
memory location. This translation is transparent to the application program.

The primary reason for using segmented memory is to increase the reliability of programs and
systems. For example, placing a program’s stack in a separate segment prevents the stack from
growing into the code or data space and overwriting instructions or data, respectively. And placing
the operating system’s or executive’s code, data, and stack in separate segments protects them from
the application program and vice versa.

With either the flat or segmented model, the Intel Architecture provides facilities for dividing the
linear address space into pages and mapping the pages into virtual memory. If an operating system/
executive uses the Intel Architecture’s paging mechanism, the existence of the pages is transparent
to an application program.

Figure 27-2. Three Memory Management Models

Linear Address

Flat Model

Linear
Address
Space*

Segment Selector

Offset

Segment Selector

Segmented Model

Real-Address Mode Model

Linear Address

Logical

Offset

Space Divided
Into Equal

Sized Segments

Address

Logical
Address

Linear
Address

Space*

Segments

* The linear address space
can be paged when using the
flat or segmented model.

27-474 Intel Architecture Software Developer’s Manual

Basic Execution Environment

The real-address mode model uses the memory model for the Intel 8086 processor, the first Intel
Architecture processor. It was provided in all the subsequent Intel Architecture processors for
compatibility with existing programs written to run on the Intel 8086 processor. The real-address
mode uses a specific implementation of segmented memory in which the linear address space for
the program and the operating system/executive consists of an array of segments of up to 64K
bytes in size each. The maximum size of the linear address space in real-address mode is 220 bytes.
(See Chapter 15, 8086 Emulation, in the Intel Architecture Software Developer’s Manual, Volume
3, for more information on this memory model.)

27.4 Modes of Operation

When writing code for the Pentium Pro processor, a programmer needs to know the operating
mode the processor is going to be in when executing the code and the memory model being used.
The relationship between operating modes and memory models is as follows:

• Protected mode. When in protected mode, the processor can use any of the memory models
described in this section. (The real-addressing mode memory model is ordinarily used only
when the processor is in the virtual-8086 mode.) The memory model used depends on the
design of the operating system or executive. When multitasking is implemented, individual
tasks can use different memory models.

• Real-address mode. When in real-address mode, the processor only supports the real-address
mode memory model.

• System management mode. When in SMM, the processor switches to a separate address
space, called the system management RAM (SMRAM). The memory model used to address
bytes in this address space is similar to the real-address mode model. (See Chapter 11, in the
Intel Architecture Software Developer’s Manual, Volume 3, for more information on the
memory model used in SMM.)

27.5 32-Bit Vs. 16-Bit Address and Operand Sizes

The processor can be configured for 32-bit or 16-bit address and operand sizes. With 32-bit address
and operand sizes, the maximum linear address or segment offset is FFFFFFFFH (232), and
operand sizes are typically 8 bits or 32 bits. With 16-bit address and operand sizes, the maximum
linear address or segment offset is FFFFH (216), and operand sizes are typically 8 bits or 16 bits.

When using 32-bit addressing, a logical address (or far pointer) consists of a 16-bit segment
selector and a 32-bit offset; when using 16-bit addressing, it consists of a 16-bit segment selector
and a 16-bit offset.

Instruction prefixes allow temporary overrides of the default address and/or operand sizes from
within a program.

When operating in protected mode, the segment descriptor for the currently executing code
segment defines the default address and operand size. A segment descriptor is a system data
structure not normally visible to application code. Assembler directives allow the default
addressing and operand size to be chosen for a program. The assembler and other tools then set up
the segment descriptor for the code segment appropriately.

Intel Architecture Software Developer’s Manual 27-475

Basic Execution Environment

When operating in real-address mode, the default addressing and operand size is 16 bits. An
address-size override can be used in real-address mode to enable 32 bit addressing; however, the
maximum allowable 32-bit address is still 0000FFFFH (216).

27.6 Registers

The processor provides 16 registers for use in general system and application programing. As
shown in Figure 27-3, these registers can be grouped as follows:

• General-purpose data registers. These eight registers are available for storing operands and
pointers.

• Segment registers. These registers hold up to six segment selectors.

• Status and control registers. These registers report and allow modification of the state of the
processor and of the program being executed.

27.6.1 General-Purpose Data Registers

The 32-bit general-purpose data registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are
provided for holding the following items:

• Operands for logical and arithmetic operations

• Operands for address calculations

• Memory pointers.

Although all of these registers are available for general storage of operands, results, and pointers,
caution should be used when referencing the ESP register. The ESP register holds the stack pointer
and as a general rule should not be used for any other purpose.

Many instructions assign specific registers to hold operands. For example, string instructions use
the contents of the ECX, ESI, and EDI registers as operands. When using a segmented memory
model, some instructions assume that pointers in certain registers are relative to specific segments.
For instance, some instructions assume that a pointer in the EBX register points to a memory
location in the DS segment.

The special uses of general-purpose registers by instructions are described in “Instruction Page
Key”. The following is a summary of these special uses:

• EAX—Accumulator for operands and results data.

• EBX—Pointer to data in the DS segment.

27-476 Intel Architecture Software Developer’s Manual

Basic Execution Environment

• ECX—Counter for string and loop operations.

• EDX—I/O pointer.

• ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string
operations.

• EDI—Pointer to data (or destination) in the segment pointed to by the ES register; destination
pointer for string operations.

• ESP—Stack pointer (in the SS segment).

• EBP—Pointer to data on the stack (in the SS segment).

As shown in Figure 27-4, the lower 16 bits of the general-purpose registers map directly to the
register set found in the 8086 and Intel 286 processors and can be referenced with the names AX,
BX, CX, DX, BP, SP, SI, and DI. Each of the lower two bytes of the EAX, EBX, ECX, and EDX
registers can be referenced by the names AH, BH, CH, and DH (high bytes) and AL, BL, CL, and
DL (low bytes).

Figure 27-3. Application Programming Registers

031
EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

Segment Registers

CS

DS

SS

ES

FS

GS

015

031
EFLAGS

EIP
31 0

General-Purpose Registers

Status and Control Registers

Intel Architecture Software Developer’s Manual 27-477

Basic Execution Environment

27.6.2 Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment in
memory, the segment selector for that segment must be present in the appropriate segment register.

When writing application code, you generally create segment selectors with assembler directives
and symbols. The assembler and other tools then create the actual segment selector values
associated with these directives and symbols. If you are writing system code, you may need to
create segment selectors directly. (A detailed description of the segment-selector data structure is
given in Chapter 3, Protected-Mode Memory Management, of the Intel Architecture Software
Developer’s Manual, Volume 3.)

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, the
segment registers are loaded with segment selectors that point to overlapping segments, each of
which begins at address 0 of the linear address space (as shown in Figure 27-5). These overlapping
segments then comprise the linear-address space for the program. (Typically, two overlapping
segments are defined: one for code and another for data and stacks. The CS segment register points
to the code segment and all the other segment registers point to the data and stack segment.)

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment within the
linear-address space (as shown in Figure 27-6). At any time, a program can thus access up to six
segments in the linear-address space. To access a segment not pointed to by one of the segment
registers, a program must first load the segment selector for the segment to be accessed into a
segment register.

Figure 27-4. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI

27-478 Intel Architecture Software Developer’s Manual

Basic Execution Environment

Each of the segment registers is associated with one of three types of storage: code, data, or stack).
For example, the CS register contains the segment selector for the code segment, where the
instructions being executed are stored. The processor fetches instructions from the code segment,
using a logical address that consists of the segment selector in the CS register and the contents of
the EIP register. The EIP register contains the linear address within the code segment of the next
instruction to be executed. The CS register cannot be loaded explicitly by an application program.
Instead, it is loaded implicitly by instructions or internal processor operations that change program
control (such as, procedure calls, interrupt handling, or task switching).

The DS, ES, FS, and GS registers point to four data segments. The availability of four data
segments permits efficient and secure access to different types of data structures. For example, four
separate data segments might be created: one for the data structures of the current module, another
for the data exported from a higher-level module, a third for a dynamically created data structure,

Figure 27-5. Use of Segment Registers for Flat Memory Model

Figure 27-6. Use of Segment Registers in Segmented Memory Model

Segment Registers

CS

SS
DS

ES
FS
GS

Linear Address
Space for Program

The segment selector in
each segment register
points to an overlapping

Overlapping
Segments

of up to
4G Bytes

segment in the linear
address space.

Beginning at
Address 0

Segment Registers

CS
DS
SS
ES
FS
GS

Code
Segment

Data
Segment

Stack
Segment

Data
Segment

Data
Segment

Data
Segment

All segments
are mapped
to the same
linear-address
space

Intel Architecture Software Developer’s Manual 27-479

Basic Execution Environment

and a fourth for data shared with another program. To access additional data segments, the
application program must load segment selectors for these segments into the DS, ES, FS, and GS
registers, as needed.

The SS register contains the segment selector for a stack segment, where the procedure stack is
stored for the program, task, or handler currently being executed. All stack operations use the SS
register to find the stack segment. Unlike the CS register, the SS register can be loaded explicitly,
which permits application programs to set up multiple stacks and switch among them.

See “Memory Organization”, for an overview of how the segment registers are used in real-address
mode.

The four segment registers CS, DS, SS, and ES are the same as the segment registers found in the
Intel 8086 and Intel 286 processors and the FS and GS registers were introduced into the Intel
Architecture with the Intel386 family of processors.

27.6.3 EFLAGS Register

The 32-bit EFLAGS register contains a group of status flags, a control flag, and a group of system
flags. Figure 27-7 defines the flags within this register. Following initialization of the processor
(either by asserting the RESET pin or the INIT pin), the state of the EFLAGS register is
00000002H. Bits 1, 3, 5, 15, and 22 through 31 of this register are reserved. Software should not
use or depend on the states of any of these bits.

Some of the flags in the EFLAGS register can be modified directly, using special-purpose
instructions (described in the following sections). There are no instructions that allow the whole
register to be examined or modified directly. However, the following instructions can be used to
move groups of flags to and from the procedure stack or the EAX register: LAHF, SAHF, PUSHF,
PUSHFD, POPF, and POPFD. After the contents of the EFLAGS register have been transferred to
the procedure stack or EAX register, the flags can be examined and modified using the processor’s
bit manipulation instructions (BT, BTS, BTR, and BTC).

When suspending a task (using the processor’s multitasking facilities), the processor automatically
saves the state of the EFLAGS register in the task state segment (TSS) for the task being
suspended. When binding itself to a new task, the processor loads the EFLAGS register with data
from the new task’s TSS.

When a call is made to an interrupt or exception handler procedure, the processor automatically
saves the state of the EFLAGS registers on the procedure stack. When an interrupt or exception is
handled with a task switch, the state of the EFLAGS register is saved in the TSS for the task being
suspended.

27-480 Intel Architecture Software Developer’s Manual

Basic Execution Environment

As the Intel Architecture has evolved, flags have been added to the EFLAGS register, but the
function and placement of existing flags have remained the same from one family of the Intel
Architecture processors to the next. As a result, code that accesses or modifies these flags for one
family of Intel Architecture processors works as expected when run on later families of processors.

27.6.3.1 Status Flags

The status flags (bits 0, 2, 4, 6, 7, and 11) of the EFLAGS register indicate the results of arithmetic
instructions, such as the ADD, SUB, MUL, and DIV instructions. The functions of the status flags
are as follows:

CF (bit 0) Carry flag. Set if an arithmetic operation generates a carry or a borrow out of the
most-significant bit of the result; cleared otherwise. This flag indicates an overflow
condition for unsigned-integer arithmetic. It is also used in multiple-precision
arithmetic.

PF (bit 2) Parity flag. Set if the least-significant byte of the result contains an even number of
1 bits; cleared otherwise.

AF (bit 4) Adjust flag. Set if an arithmetic operation generates a carry or a borrow out of bit 3
of the result; cleared otherwise. This flag is used in binary-coded decimal (BCD)
arithmetic.

ZF (bit 6) Zero flag. Set if the result is zero; cleared otherwise.

SF (bit 7) Sign flag. Set equal to the most-significant bit of the result, which is the sign bit of
a signed integer. (0 indicates a positive value and 1 indicates a negative value.)

Figure 27-7. EFLAGS Register

31 2930 28 27 26 25 24 23 22 21 20 19 18 17 16

0 R
F

I
D

A
C

V
M

X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT)
X I/O Privilege Level (IOPL)
X Overflow Flag (OF)
X Direction Flag (DF)
X Interrupt Enable Flag (IF)

X Alignment Check (AC)

X ID Flag (ID)
X Virtual Interrupt Pending (VIP)

15 1314 12 11 10 9 8 7 6 5 4 3 2 1 0

0 C
F

A
F

P
F 1D

F
I
F

T
F

S
F

Z
F

N
T 000 0 0 0 0 0 0 0 0

V
I
P

V
I
F

O
F

I
O
P
L

X Virtual Interrupt Flag (VIF)

X Trap Flag (TF)
S Sign Flag (SF)
S Zero Flag (ZF)
S Auxiliary Carry Flag (AF)
S Parity Flag (PF)
S Carry Flag (CF)

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

Reserved bit positions. DO NOT USE.
Always set to values previously read.

Intel Architecture Software Developer’s Manual 27-481

Basic Execution Environment

OF (bit 11) Overflow flag. Set if the integer result is too large a positive number or too small a
negative number (excluding the sign-bit) to fit in the destination operand; cleared
otherwise. This flag indicates an overflow condition for signed-integer (two’s
complement) arithmetic.

Of these status flags, only the CF flag can be modified directly, using the STC, CLC, and CMC
instructions. Also the bit instructions (BT, BTS, BTR, and BTC) copy a specified bit into the CF
flag.

The status flags allow a single arithmetic operation to produce results for three different data types:
unsigned integers, signed integers, and BCD integers. If the result of an arithmetic operation is
treated as an unsigned integer, the CF flag indicates an out-of-range condition (carry or a borrow);
if treated as a signed integer (two’s complement number), the OF flag indicates a carry or borrow;
and if treated as a BCD digit, the AF flag indicates a carry or borrow. The SF flag indicates the sign
of a signed integer. The ZF flag indicates either a signed- or an unsigned-integer zero.

When performing multiple-precision arithmetic on integers, the CF flag is used in conjunction with
the add with carry (ADC) and subtract with borrow (SBB) instructions to propagate a carry or
borrow from one computation to the next.

The condition instructions Jcc (jump on condition code cc), SETcc (byte set on condition code cc),
LOOPcc, and CMOVcc (conditional move) use one or more of the status flags as condition codes
and test them for branch, set-byte, or end-loop conditions.

27.6.3.2 DF Flag

The direction flag (DF, located in bit 10 of the EFLAGS register) controls the string instructions
(MOVS, CMPS, SCAS, LODS, and STOS). Setting the DF flag causes the string instructions to
auto-decrement (that is, to process strings from high addresses to low addresses). Clearing the
DF flag causes the string instructions to auto-increment (process strings from low addresses to
high addresses).

The STD and CLD instructions set and clear the DF flag, respectively.

27.6.4 System Flags and IOPL Field

The system flags and IOPL field in the EFLAGS register control operating-system or executive
operations. They should not be modified by application programs. The functions of the status
flags are as follows:

IF (bit 9) Interrupt enable flag. Controls the response of the processor to maskable
interrupt requests. Set to respond to maskable interrupts; cleared to inhibit
maskable interrupts.

TF (bit 8) Trap flag. Set to enable single-step mode for debugging; clear to disable
single-step mode.

IOPL (bits 12 and 13) I/O privilege level field. Indicates the I/O privilege level of the currently
running program or task. The current privilege level (CPL) of the currently
running program or task must be less than or equal to the I/O privilege level
to access the I/O address space. This field can only be modified by the
POPF and IRET instructions when operating at a CPL of 0.

27-482 Intel Architecture Software Developer’s Manual

Basic Execution Environment

NT (bit 14) Nested task flag. Controls the chaining of interrupted and called tasks. Set
when the current task is linked to the previously executed task; cleared
when the current task is not linked to another task.

RF (bit 16) Resume flag. Controls the processor’s response to debug exceptions.

VM (bit 17) Virtual-8086 mode flag. Set to enable virtual-8086 mode; clear to return
to protected mode.

AC (bit 18) Alignment check flag. Set this flag and the AM bit in the CR0 register to
enable alignment checking of memory references; clear the AC flag and/or
the AM bit to disable alignment checking.

VIF (bit 19) Virtual interrupt flag. Virtual image of the IF flag. Used in conjunction
with the VIP flag. (To use this flag and the VIP flag the virtual mode
extensions are enabled by setting the VME flag in control register CR4.)

VIP (bit 20) Virtual interrupt pending flag. Set to indicate to that an interrupt is
pending; clear when no interrupts are pending. (Software sets and clears
this flag. The processor only reads it.) Used in conjunction with the VIF
flag.

ID (bit 21) Identification flag. The ability of a program to set or clear this flag
indicates support for the CPUID instruction.

See Chapter 3, Protected-Mode Memory Management, in the Intel Architecture Software
Developer’s Manual, Volume 3, for a detail description of these flags.

27.7 Instruction Pointer

The instruction pointer (EIP) register contains the offset in the current code segment for the next
instruction to be executed. It is advanced from one instruction boundary to the next in straight-line
code or it is moved ahead or backwards by a number of instructions when executing JMP, Jcc,
CALL, RET, and IRET instructions.

The EIP register cannot be accessed directly by software; it is controlled implicitly by control-
transfer instructions (such as JMP, Jcc, CALL, and RET), interrupts, and exceptions. The only way
to read the EIP register is to execute a CALL instruction and then read the value of the return
instruction pointer from the procedure stack. The EIP register can be loaded indirectly by
modifying the value of a return instruction pointer on the procedure stack and executing a return
instruction (RET or IRET).

All Intel Architecture processors prefetch instructions. Because of instruction prefetching, an
instruction address read from the bus during an instruction load does not match the value in the EIP
register. Even though different processor generations use different prefetching mechanisms, the
function of EIP register to direct program flow remains fully compatible with all software written
to run on Intel Architecture processors.

27.8 Operand-Size and Address-Size Attributes

When processor is executing in protected mode, every code segment has a default operand-size
attribute and address-size attribute. These attributes are selected with the D (default size) flag in the
segment descriptor for the code segment (see Chapter 3, Protected-Mode Memory Management, in

Intel Architecture Software Developer’s Manual 27-483

Basic Execution Environment

the Intel Architecture Software Developer’s Manual, Volume 3). When the D flag is set, the 32-bit
operand-size and address-size attributes are selected; when the flag is clear, the 16-bit size
attributes are selected. When the processor is executing in real-address mode, virtual-8086 mode,
or SMM, the default operand-size and address-size attributes are always 16 bits.

The operand-size attribute selects the sizes of operands that instructions operate on. When the 16-
bit operand-size attribute is in force, operands can generally be either 8 bits or 16 bits, and when
the 32-bit operand-size attribute is in force, operands can generally be 8 bits or 32 bits.

The address-size attribute selects the sizes of addresses used to address memory: 16 bits or 32 bits.
When the 16-bit address-size attribute is in force, segment offsets and displacements are 16-bits.
This restriction limits the size of a segment that can be addressed to 64 KBytes. When the 32-bit
address-size attribute is in force, segment offsets and displacements are 32-bits, allowing segments
of up to 4 GBytes to be addressed.

The default operand-size attribute and/or address-size attribute can be overridden for a particular
instruction by adding an operand-size and/or address-size prefix to an instruction (see “Instruction
Prefixes” in Chapter 2 of the Intel Architecture Software Developer’s Manual, Volume 3). The
effect of this prefix applies only to the instruction it is attached to.

Table 27-1 shows effective operand size and address size (when executing in protected mode)
depending on the settings of the B flag and the operand-size and address-size prefixes.

NOTE:
Y Yes, this instruction prefix is present.
N No, this instruction prefix is not present.

Table 27-1. Effective Operand- and Address-Size Attributes

D Flag in Code Segment
Descriptor 0 0 0 0 1 1 1 1

Operand-Size Prefix 66H N N Y Y N N Y Y

Address-Size Prefix 67H N Y N Y N Y N Y

Effective Operand Size 16 16 32 32 32 32 16 16

Effective Address Size 16 32 16 32 32 16 32 16

