
1

The UNIX/MINIX Operating System
Processes & IPC

Steve Goddard
goddard@cse.unl.edu

CSCE 351
Operating System Kernels

http://www.cse.unl.edu/~goddard/Courses/CSCE351

2

◆ The original UNIX
» An experimental operating system developed by Ken Thompson & Dennis

Ritchie in the late ‘60s

◆ Main variants (“Standards”)
» System V (1983)

❖ developed by AT&T

» 4.4 BSD (1993)
❖ Open Software Foundation

◆ Commercial products
» Ultrix, DEC UNIX — DEC
» SunOS, Solaris — Sun
» HP/UX — Hewlett Packard

» POSIX
❖ IEEE/ISO

» FreeBSD
» Linux

» AIX — IBM
» Xenix — Microsoft
» ...

UNIX History

3

◆ The original MINIX was developed by Andrew Tanenbaum after
AT&T closed the source code (1978)
» An educational operating system

» Version 1.0 was released circa 1987

» Version 2.0 was released circa 1997

◆ Version 2.0
» POSIX compliant

» Fully documented

» Requires only 30MB

» Micro-kernel design

◆ “Looks like UNIX from the outside”

MINIX History

4

◆ A process is created by the fork() system call
» creates a new address space that is a duplicate of the callers

main (argc, argv)
int childpid;
{
switch (childpid = fork()) {
case 0: /* child */
child_func();
exit(0);

default: /* parent */
parent_func();
while(wait((int *) 0) != childpid);
exit(0);

case -1: /* oops */
error("fork:%s\n",sys_errlist[errno]);

}
}

childpid = 1

Parent address space

childpid = 0

Child address space

Processes

5

Processes
◆ Alternatively, processes can be “created” by an execve()

» replaces the memory image of the caller with a new program

◆ This is how the shell executes commands
» a fork() followed by an exec()

main()
{
exec(prog)
}

“parent”
address space

prog()
{

}

“child”
address space

csh

lscsh

fork()

exec()

wait()

6

◆ There exists a “master process” in UNIX: init

◆ init forks a process for each terminal port

◆ each init copy execsgetty which prints the login
prompt and then reads the login and password

◆ getty then execs login which verifies the login

◆ login then execscsh which forks new processes
for each command

init

getty login csh

ls

init

csh

fork()

exec()

wait()

Example: How users logs in

7

(Simple)
Interprocess Communication

◆ Like message passing except more general

◆ Pipes — a shared, in-memory file
» a queue of 4K bytes

» buffered, asynchronous message passing
❖ blocks reader when queue is empty

❖ blocks writer when queue is full

Pipewrite
(fd,buf,len)

read
(fd,buf,len)

8

(Simple)
Interprocess Communication

main() {
int pipe1[2], pipe2[2];

if (pipe(pipe1) == -1 || pipe(pipe2) == -1) error(...

switch (childpid = fork()) {
case 0: /* child */
close(pipe1[1]); /* write descriptor for pipe1 */
close(pipe2[0]); /* read descriptor for pipe2 */
client(pipe1[0],pipe2[1]); /* client program */

default : /* parent */
close(pipe1[0]); /* read descriptor for pipe1 */
close(pipe2[1]); /* write descriptor for pipe2 */
server(pipe2[0],pipe1[1]); /* server program */
while (wait((int *) 0) != childpid); /* wait for child */

}
}

Pipe1 read()write()

Pipe2 write()read()
Server Client

9

◆ UNIX maintains an open file table for each process which
lists each file in use by the process
» the OFT is copied when processes are forked

Open File Table

0: stdin
1: stdout
2: stderr

:
:

63:

per process OFT

file block
&

offset pointers

system-wide
file structure table

list of i-nodes
& a count of the
of file structure
table entries that

point to them

in-core i-node list

sync’ed with
disk i-node

list

10

The UNIX File System
Open file table examples

◆ I/O redirection — ls > foo
» just change a pointer in the OFT

0: stdin
1: stdout
2: stderr

:

per process OFT

/dev/tty03

system
file structure table

0: stdin
1: stdout
2: stderr

:

per process OFT

/dev/tty03

/u3/kj/foo

system
file structure table

fork();<edit OFT>;exec(ls)

11

(Primary) MINIX Kernel
Interprocess Communication

◆ Message Passing is used by Kernel tasks
» Blocking send and receive primitives

❖ Syntax:

send(dest, &message)

receive(dest, &message)

sendrec(src_dest, &message)

Note: page 97 shows this as send_rec(src_dest, &message)

but page 560, file include/minix/syslib.h shows it as sendrec()

