CSCE

351

Operating System Kernels

Overview of MINI X
/O Software

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE351

MINIX 1/O and Layered

Struct

u r e Layer

4 Init User User User
process process process

3 Memory File Network

manager system server
5 Disk Tty Clock System | Ethernet

task task task task task
1 Process management

1/0
Layer reply I/O functions

1o _|
request

User processes
o

|
* Device-independent

I software
Y

Device drivers

Interrupt handlers

> 4 > I
AN

Hardware

Make 1/O call; format I/O; spooling

User processes

Server processes

I/O tasks

Naming, protection, blocking, buffering, allocation

Set up device registers; check status

Wake up driver when 1/O completed

Perform I/O operation

MINIX Interrupt Handlers

0 Most interrupt handlers generate and send wake-
up messages for blocked device tasks, as described
inCh 2

0 For Disk devices, the handler may be as ssimple as:
w_status = in_byte(w wn->base+REG _STATUS) ;
i nterrupt (W NCHESTER) ;
return 1,

0 However, not al work thisway due to the
message passing overhead of this methodol ogy.

Clock Handlers

0 Clock Handler does intermediate work to reduce
message passing overhead
» Accumulates ticks ipendi ng_ti cks
» Sends message to clock task when
O Anaarm expires, or
0 Scheduling change required (quantum expires)
0 If the handler doesn’t not notify the clock task of
every clock tick, does that mean the clock is not
accurate?

Keyboard Handler and other
Terminal Device Interrupt Handlers

O Sends no messages!
0 Reads datafrom keyboard and filters events
» How?
» What is an event?
0 Adds significant events/codes to a buffer and updates
tty_timeout (i.e, clearsit)
0 Clock handler sends message to the terminal task when
tty_tinmeout expires

0 TTY task processes the queue of keyboard events and all
other terminal device queues aswell (e.g., RS-232)

Device Driversin MINI X

0 Separate I/0O task (device driver) for each class of 1/0
devices

0 Communicate viathe file system
0 Simpledriversarein their ownfile

0 More complex drivers are subdivided into device
dependent (e.g., RAM Disk, hard disk, floppy disk, and
terminal) code and device independent/common code
(driver.c or tty.c)

0 Still separate task for each type of device
» Why?

0 Device drivers are linked into the kernel
» Why?

Process Structured vs.
Monolithic Structured

Process-structured system Monolithic system
Processes
/ A process
User space User-
space
part
File
Device Ee;'lzl Device
driver o] driver
1-4 are request The user-space part
and reply messages calls the kernel-space part
between three by trapping. The file system
independent calls the device driver as a
processes. procedure. The entire

operating system is part
of each process

(a) (b)

Generic M essage Formats

Requests
Field Type M eaning
m.m_type int Operation requested
m.DEVICE int Minor device to use
m.PROC_NR int Process requesting the I/O
m. COUNT int Byte count or ioctl code
m. POSITION long | Position on device
m.DEVICE int Minor deviceto use
Replies
Field Type M eaning
m.m_type int Always TASK_REPLY

m.REP_PROC_NR | int Same as PROC_NR in request

mM.REP_STATUS |int Bytes transferred or error number

Generic Device Driver

Structure
nmessage Mess; /* message buffer */
void io_task() {
initialize(); /* only done once */
whi | e(TRUE) {
recei ve(ANY, &ness); /* wait for a request for work */
cal l er = ness. source; /* process sending nmsg */
switch(nmess. type){
case READ: rcode = dev_read(&ness); break;

case WRI TE: rcode = dev_wite(&ness); break;
/* Other cases go here, e.g., OPEN, CLCSE, |OTCTL */

defaul t: rcode = ERROR;
}
mess. type = TASK_REPLY;
nmess. status = rcode; /* result code */
send(cal |l er, &ness); /* send reply to caller */

Block Devicesin MINI X

0 MINIX aways has at least three block device
tasks compiled into the kerndl:
» RAM disk driver
» Floppy disk driver
» Hard disk driver(s)

0 Each block device driver does device specific
initialization and then calls ashared I/O function
that implements the main loop

» A data structure that points to the device specific

routines to handle reads, writes, etc. is passed as an
input parameter

MINIX Main I/O Loop
Block Device Shared Function

nmessage Mess; /* message buffer */
voi d shared_io_task(struct driver_table *entry_points) {
/* initialization is done before calling this routine */
whi | e(TRUE) {
recei ve(ANY, &mress); /* wait for a request for work */
caller = ness.source; /* process sending nmsg */
swi t ch(ness. type){

case READ: rcode =(*entry_points->dev_read) (&ness); break;
case WRITE: rcode=(*entry_poi nts->dev_wite)(&ness); break;

/* Other cases go here, e.g., OPEN, CLCSE, |OTCTL */

defaul t: rcode = ERROR;
}
mess. type = TASK _REPLY;
ness. status = rcode; /* result code */
send(cal |l er, &ness); /* send reply to caller */

Six Operations Supported by
MINIX Block Device Drivers

OPEN

CLOSE

READ

WRITE

|OCTL
SCATTERED_IO

o o & w NP

Common Block Device SW

0 Thedriver structure that contains the pointers to
device specific routinesisdefined indri ver . h

0 The main loop (shared I/O function) isdefined in
driver.c
» It does not return to the caller

0 Device specific codeisin separate files
»at_wni.c

» fl oppy. c
» Menory. c

Driver Library

0 “Filesdrvl i b. handdr vl i b. ¢ contain
system-dependent code that supports disk partio
on IBM PC compatible computers.”

0 Reasons to partition a disk:
» Large disks are cheaper/byte than small disks
0 Use one disk for multiple OS rather than use two disks
» Put different file system types (for different OS) on one
disk
» OS disk size limits, e.g., 1-GB file system limit

» Convenient to put a portion of a file system in its own
partition

