		CSCE 451/851	
		Operating Systems Principles	
		Virtual Memory: Load Control & Performance	
		Steve Goddard goddard@cse.unl.edu	
		http://www.cse.unl.edu/~goddard/Courses/CSCE451	
		1	
	CSCE 451/851 Steve Goddard		
	Le	 Placement strategy Replacement strategies Load control strategies When & how much of a proces load into physical memory, or How and when to set the multi 	Virtual Memory Management Fundamental issues
	Lecture 13	Placement strategies Replacement strategies * When & how much of a process's virtual memory to load into physical memory, <i>or</i> * How and when to set the multiprogramming level	nagement
CS(Ste	E 45 e Go Je		Page

 $\gg MPL = f/k$

 \bullet *f* is number of page frames

- \mathbf{k} is the minimum number of pages required for a process to execute
- ◆ Low paging overhead
 - » 1 process
- ♦ Issues
 - » What criterion should be used to determine when to increase or decrease the *MPL*?
 - » Which task should be swapped out if the *MPL* must be reduced?

Load Control How *not* to do it!

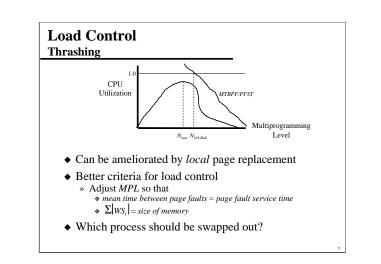
Base load control on CPU utilization

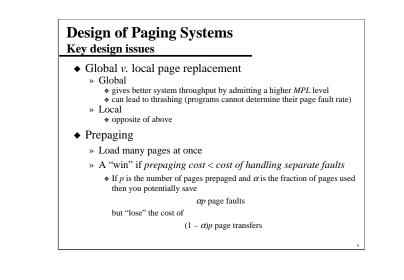
- Assume memory is full
- A chain of page faults occur » a queue of processes forms at the paging device

- ♦ CPU utilization falls
- Operating system increases MPL
 » New processes fault, taking memory away from existing processes
- ◆ CPU utilization goes to 0, *so*...

System is *thrashing* — spending all of its time paging

CSCE 451/851 Steve Goddard


Lecture 13


Page 3

CSCE 451/851 Steve Goddard

Lecture 13

Page 4

CSCE 451/851 Steve Goddard

Lecture 13

Page 5

CSCE 451/851 Steve Goddard

Lecture 13

Page 6

Design of Paging Systems Choice of page size

- Small pages
 - + less fragmentation, better memory utilization
 - large page tables, higher fault handling overhead <u>Example</u>: a 32-bit virtual address space with 512 byte pages
 Page table has 2³²⁻⁹ = 8,388,608 entries, requiring 16-32 MB of memory *per process*!
- ♦ Which page size...
 - » maximizes disk performance?
 - » minimizes page fault rate?
 - » is motivated by good locality?

Design of Paging Systems I/O Interlock

- To support I/O there is often a *lock bit* for each page table entry
- ◆ Example DMA
 - » Assume global page replacement
 - » A process blocked on an I/O operation appears to be an ideal candidate for replacement
 - » If replaced, however, I/O operation can corrupt system
- ♦ Solution: either
 - » Lock pages in memory
 - » Perform all I/O into and out of system space

CSCE 451/851 Steve Goddard

Lecture 13

Page 7

CSCE 451/851 Steve Goddard

Lecture 13

Page 8