CSl
Ste

CSCE 451/851
Operating Systems Principles

Segmentation & Shared Memory

Steve Goddard
goddard@cse.unl.edu

http://iwww.cse.unl.edu/~goddard/Courses/CSCE451

PIEPPOD 9MBIS
158/TSY 305D

T 9In0e7

E 45
eGo(g:

SVA
S.d weboid

(¢,s90eds ajdnnw aney 10U AYpn)

AUM «

ssa00.d Jod agdeds aweu ajbuise Ajuo

po.Jop 1SU0J 9AEY S1eP 0] SOWBYIS [

saoeds aweN

JusWwebeue |\ Alows A

1xXal

BIeq
welboid

deon

ge 1

CSCE 451/851
Steve Goddard

Multiple Name Spaces
Example — Protection/Fault isolation & sharing

n,_
on_g 2M-1
Heap > Heap
2M-1
0
D R D
[TStack | 21 0 [TStack |
progran] ———— [Prooran] 21
Data n Data 0
2n-1 0 o
Frogrem —» Progrem User
O I'EXT O Iext Code
Lecture 14

Page 3

CSCE 451/851
Steve Goddard

Supporting Multiple Name Spaces

Segmentation

0 Segment — a memory “object”

» A virtual address space

0 A process now addresses objects —a [gaaddr)

» S— segment number

» addr — a virtual address within an object offset

0 virtual address as before: (p, 0)

0 A virtual addressis now atriple (s, p, 0)

Segment + Address register scheme:

[0
n, 0 n

s A
p o

Single address scheme:

(I [T

A A

s p)

Lecture 14

Page 4

CSCE 451/851
Steve Goddard

Segmentation
Virtual addresstrandation

0 One additional level of indirection — Tisegment table

s P 0 Virtual Physical
A
o 15 5 o Addresses ddresses
STBR pagetable —®—> T
? S I . p
N Nd
Process P’s Segment S's
Segment Table Page Table

Lecture 14

Page 5

CSCE 451/851
Steve Goddard

Shared Memory

Sharing of procedures and data

0 Why share?

0 Levelsof sharing
» source code
» object code
» executable binaries

Lecture 14

Page 6

Shared Memory Sharing in Non-Segmented/Paged Systems

Requirementsfor sharing Trading-off protection for sharing
Sharing Code
o Programs cannot modify their own code O gﬁg&gﬂ;}? longer be allocated
“p "
> ure procedures » Base + Limit register schemes not Process
0 Serialy sharable code applicable B
» Programs that are self-initializing o .
» Programs that contain their own global data 0 Loaders must determineif copies
0 Concurrently sharable code ﬂe?n?,rr(;d objects dlready existin
» Programs must breentrant » And if so where is it? Process Shared
0 Run-time stack cannot be shared A oI
0 Similar problems with garbage
Sharing Data collection

0 Data cannot (typically) contain pointers

CSCE 451/851 CSCE 451/851
Steve Goddard Lecture 14 Page 7 Steve Goddard Lecture 14 Page 8

Sharing in Paged Systems Sharingin Paged Systems
Code sharing Code sharing
0 Shared code must reside in the same place in all process’s 0 Thus shared pages must have the (p.0)
VAS same page number in a
3 process’s VAS —
(py 0) |store x, 6 s s
Vruar| [Virwar] =2 |1—
shared proc() Py % % s = p I =0 _1—~
belg;gp [Space] |=Space] (p, 0) irtuat irtuat Phydbd}'
X =6 Shared e A’s Page Memory
: Ds Sonte Shared Space Table
L wie | Object | [Eaeres| [sered] Hobject] |Shared| [Shared
Code Code Eoede| Foede - |/
] : =2 1—
P Siggess ll i Lot o obrect| [obres] I =
| " (P, 0) B's Page P (P, 0)
P1 7 . Table ~ o
CSCE 451/851 CSCE 451/851
Steve Goddard Lecture 14 Page 9 Steve Goddard Lecture 14 Page 10

Sharing in Paged Systems Sharingin Paged Systems
Data sharing Data sharing
12
0 “Raw data” — pages can appear anywhere |—5g 0 Shared data containing pointers must also reside in the
in a process’s VAS & same place in all process’s VAS
Vaund
shared var
shared var foo : char = —
foo : array[1..n] of integer bar : ptr to char A —
—_ ~ virmat] viemad]
AS Bs Physicat (ps 0)| foo:a Space|] [FSpace]
3 SIEEES) SRS B's Page Nemory
jAderesy |Adaresqy Table -
o1 Space] |Sbace) —Shared]
Shar , —5
g = S [Shared| [Shared
57 i
== Object \ o]
1‘519 Shared) Obtect - Eﬁ
69 FPete— =21 Object] [Object]
Object] A's Page p, ParC P2 0| ——
Table “ »
CSCE 451/851 CSCE 451/851

Steve Goddard Lecture 14 Page 11 Steve Goddard Lecture 14 Page 12

CSCE 451/851
Steve Goddard

Sharing in Paged Systems

Data sharing

0 If the data contains pointers treat

pages the same as shared code bar: (p,, 0)
shared var
foo : char
bar : ptr to char
f=1 11—
=1
&S BS Physical
T iual] el A's Page Memory
[Aadresy [Adaresy Table
Shared Space] |-Space]
Dara Shared] [Shared (D2, 0) . &
-Object| oroter] [~Eeter =1
A Object| [Obfect =2
B's Page
Table N
Lecture 14

Page 13

CSCE 451/851
Steve Goddard

Sharing in Segmented Systems
The simplest form of sharing

0 Sharing portion of a process’s “segment space”

Lib

2

R

Heap n
Wx§/ / e

ﬁ%_ Prograny

EER

data seg _—Data
code seq

As Segmem\ Fogro
Space Iext

Lecture 14

Page 14

Sharing in Segmented Systems
Sharing segments
0 Unit of sharing a segment rather than a set of pages
» Processes need only agree on 1 number rather than a sequence
of numbers
» If segments are paged then the page tables are automatically
shared
Shared 5o (@)
s (e
code seq T=> .
A’'s Segment Table T=0_|—~ 57
T=1_|—~
shared seg > >
I heap seg Shared Segment
S | [codesey Page Table T
B's Segment Table -

CSCE 451/851
Steve Goddard Lecture 14

Page 15

CSCE 451/851
Steve Goddard

Dynamic Linking & Sharing
A key technology for realizing shared memory

o Concept
» Dynamically bind to shared modules at run-time

0 Advantages
» On demand linking ensures that only those modules
that are actually used will be loaded
» Possibly allows modules to be replaced or upgraded at
run-time
0 Disadvantages

» Possible performance penalty at run-time for invoking
new modules

» Overhead of indirect/interpretive access
» Complexity of the overall scheme

Lecture 14

Page 16

