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Multiple Name Spaces
Example — Protection/Fault isolation & sharing

0

2n–1

Run-
Time
Stack

Program
Data

Program
Text

Heap

0

2n1–1

Program
Text

0

Program
Data

0

Run-
Time
Stack

Heap

0

2n2–1

2n3–1

2n4–1

User
Code

0

2n6–1

Libraries

2n5–1
0

Page 4
CSCE 451/851
Steve Goddard Lecture 14

4

Supporting Multiple Name Spaces
Segmentation

◆ Segment — a memory “object”
» A virtual address space

◆ A process now addresses objects —a pair (s, addr)
» s — segment number

» addr — a virtual address within an object offset
❖ virtual address as before: (p, o)

◆ A virtual address is now a triple (s, p, o)

0

Segment + Address register scheme:

p os
s

p o

Single address scheme:

nn10 0n2
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Segmentation
Virtual address translation

◆ One additional level of indirection — The segment table
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Shared Memory
Sharing of procedures and data

◆ Why share?

◆ Levels of sharing
» source code

» object code

» executable binaries
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Shared Memory
Requirements for sharing

◆ Programs cannot modify their own code
» “Pure procedures”

◆ Serially sharable code
» Programs that are self-initializing
» Programs that contain their own global data

◆ Concurrently sharable code
» Programs must be reentrant

❖ Run-time stack cannot be shared

◆ Data cannot (typically) contain pointers

Sharing Code

Sharing Data
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Sharing in Non-Segmented/Paged Systems
Trading-off protection for sharing

◆ Space can no longer be allocated
contiguously
» Base + Limit register schemes not

applicable

◆ Loaders must determine if copies
of shared objects already exist in
memory
» And if so where is it?

◆ Similar problems with garbage
collection

Process
A

Process
B

Shared
Object
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jmp (p4,o)

Sharing in Paged Systems
Code sharing

◆ Shared code must reside in the same place in all process’s
VAS

(p4,o) B’s
Virtual
Address
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Shared
Code
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shared proc()
begin
  loop
    x := 6
     :
     :
  end while
end proc

store x,6
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Sharing in Paged Systems
Code sharing

◆ Thus shared pages must have the
same page number in all
process’s VAS
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Sharing in Paged Systems
Data sharing

◆ “Raw data”  — pages can appear anywhere
in a process’s VAS
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Sharing in Paged Systems
Data sharing

◆ Shared data containing pointers must also reside in the
same place in all process’s VAS

(p2,o)
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shared var
  foo : char
  bar : ptr to char
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Sharing in Paged Systems
Data sharing

◆ If the data contains pointers treat
pages the same as shared code

shared var
  foo : char
  bar : ptr to char
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Sharing in Segmented Systems
The simplest form of sharing

◆ Sharing portion of a process’s “segment space”

Program
Text

Program
Data

Run-
Time
Stack

Heap

Libraries

A’s Segment 
Space

 stack
data seg
code seg

heap
library seg
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Sharing in Segmented Systems
Sharing segments

◆ Unit of sharing a segment rather than a set of pages
» Processes need only agree on 1 number rather than a sequence

of numbers
» If segments are paged then the page tables are automatically

shared

Shared Segment
Page Table

B’s Segment Table

s

shared seg

A’s Segment Table

s

shared seg

jmp (p,o)

57
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f = 1

heap seg
code seg

heap seg
code seg

Page 16
CSCE 451/851
Steve Goddard Lecture 14

16

Dynamic Linking & Sharing
A key technology for realizing shared memory

◆ Concept
» Dynamically bind to shared modules at run-time

◆ Advantages
» On demand linking ensures that only those modules

that are actually used will be loaded
» Possibly allows modules to be replaced or upgraded at

run-time

◆ Disadvantages
» Possible performance penalty at run-time for invoking

new modules

» Overhead of indirect/interpretive access

» Complexity of the overall scheme


