
Page 1
CSCE 451/851
Steve Goddard Lecture 14

1

CSCE 451/851
Operating Systems Principles

http://www.cse.unl.edu/~goddard/Courses/CSCE451

Segmentation & Shared Memory

Steve Goddard
goddard@cse.unl.edu

Page 2
C

SC
E

 451/851
S

teve G
oddard

L
ecture 14

2

M
em

ory M
anagem

ent
N

am
e spaces

◆
Schem

es to date have considered
only a single nam

e space per process
»

W
h

y?

(W
hy n

ot have m
u

ltip
le sp

aces?)

0

2
n–

1

P
rogram

 P
’s

V
A

S

R
un-

T
im

e
S

tack

P
rogram
D

ata

P
rogram
T

ext

H
eap

Page 3
CSCE 451/851
Steve Goddard Lecture 14

3

Multiple Name Spaces
Example — Protection/Fault isolation & sharing

0

2n–1

Run-
Time
Stack

Program
Data

Program
Text

Heap

0

2n1–1

Program
Text

0

Program
Data

0

Run-
Time
Stack

Heap

0

2n2–1

2n3–1

2n4–1

User
Code

0

2n6–1

Libraries

2n5–1
0

Page 4
CSCE 451/851
Steve Goddard Lecture 14

4

Supporting Multiple Name Spaces
Segmentation

◆ Segment — a memory “object”
» A virtual address space

◆ A process now addresses objects —a pair (s, addr)
» s — segment number

» addr — a virtual address within an object offset
❖ virtual address as before: (p, o)

◆ A virtual address is now a triple (s, p, o)

0

Segment + Address register scheme:

p os
s

p o

Single address scheme:

nn10 0n2

Page 5
CSCE 451/851
Steve Goddard Lecture 14

5

Segmentation
Virtual address translation

◆ One additional level of indirection — The segment table

Segment S’s
Page Table

019 915

s o

0
11 9

f oPhysical
Addresses

Virtual
Addresses

CPU

Process P’s
Segment Table

page table

p

f

s

STBR

p

++

Memory

Page 6
CSCE 451/851
Steve Goddard Lecture 14

6

Shared Memory
Sharing of procedures and data

◆ Why share?

◆ Levels of sharing
» source code

» object code

» executable binaries

Page 7
CSCE 451/851
Steve Goddard Lecture 14

7

Shared Memory
Requirements for sharing

◆ Programs cannot modify their own code
» “Pure procedures”

◆ Serially sharable code
» Programs that are self-initializing
» Programs that contain their own global data

◆ Concurrently sharable code
» Programs must be reentrant

❖ Run-time stack cannot be shared

◆ Data cannot (typically) contain pointers

Sharing Code

Sharing Data

Page 8
CSCE 451/851
Steve Goddard Lecture 14

8

Sharing in Non-Segmented/Paged Systems
Trading-off protection for sharing

◆ Space can no longer be allocated
contiguously
» Base + Limit register schemes not

applicable

◆ Loaders must determine if copies
of shared objects already exist in
memory
» And if so where is it?

◆ Similar problems with garbage
collection

Process
A

Process
B

Shared
Object

Page 9
CSCE 451/851
Steve Goddard Lecture 14

9

jmp (p4,o)

Sharing in Paged Systems
Code sharing

◆ Shared code must reside in the same place in all process’s
VAS

(p4,o) B’s
Virtual
Address
Space

A’s
Virtual
Address
Space

Shared
Code

Object

p4

p3

p2

p1

shared proc()
begin
 loop
 x := 6
 :
 :
 end while
end proc

store x,6

Shared
Code

Object

Shared
Code

Object

Page 10
CSCE 451/851
Steve Goddard Lecture 14

10

Sharing in Paged Systems
Code sharing

◆ Thus shared pages must have the
same page number in all
process’s VAS

Physical
Memory

jmp (p,o)

A’s Page
Table

p f = 0
f = 4

B’s Page
Table

p f = 0
f = 4

(p,o)

B’s
Virtual
Address
Space

A’s
Virtual
Address
Space

Shared
Code

Object

Shared
Code

Object

(p,o)

Shared
Code

Object

jmp (p,o)

Page 11
CSCE 451/851
Steve Goddard Lecture 14

11

Sharing in Paged Systems
Data sharing

◆ “Raw data” — pages can appear anywhere
in a process’s VAS

A’s Page
Table

Physical
MemoryB’s Page

Table

57

f = 4

f = 4

shared var
 foo : array[1..n] of integer

A’s
Virtual
Address
Space

Shared
Data

Object

Shared
Data

Object

B’s
Virtual
Address
Space

4
159
57
72
0
91
0
83

69

41

159
4
69

72

Page 12
CSCE 451/851
Steve Goddard Lecture 14

12

Sharing in Paged Systems
Data sharing

◆ Shared data containing pointers must also reside in the
same place in all process’s VAS

(p2,o)

B’s
Virtual
Address
Space

A’s
Virtual
Address
Space

Shared
Data

Object

Shared
Data

Object

p2

p1

foo: ‘a’

shared var
 foo : char
 bar : ptr to char

Shared
Data

Object

bar:(p2, o)

Page 13
CSCE 451/851
Steve Goddard Lecture 14

13

Sharing in Paged Systems
Data sharing

◆ If the data contains pointers treat
pages the same as shared code

shared var
 foo : char
 bar : ptr to char

A’s
Virtual
Address
Space

Shared
Data

Object

B’s
Virtual
Address
Space

Shared
Data

Object

Physical
MemoryA’s Page

Table

bar: (p2,o)

(p2,o): ‘a’

f = 4
f = 1

B’s Page
Table

f = 4
f = 1

foo: ‘a’

Shared
Data

Object

bar:(p2, o)

Page 14
CSCE 451/851
Steve Goddard Lecture 14

14

Sharing in Segmented Systems
The simplest form of sharing

◆ Sharing portion of a process’s “segment space”

Program
Text

Program
Data

Run-
Time
Stack

Heap

Libraries

A’s Segment
Space

 stack
data seg
code seg

heap
library seg

Page 15
CSCE 451/851
Steve Goddard Lecture 14

15

Sharing in Segmented Systems
Sharing segments

◆ Unit of sharing a segment rather than a set of pages
» Processes need only agree on 1 number rather than a sequence

of numbers
» If segments are paged then the page tables are automatically

shared

Shared Segment
Page Table

B’s Segment Table

s

shared seg

A’s Segment Table

s

shared seg

jmp (p,o)

57

(p,o)

f = 0
f = 2

f = 1

heap seg
code seg

heap seg
code seg

Page 16
CSCE 451/851
Steve Goddard Lecture 14

16

Dynamic Linking & Sharing
A key technology for realizing shared memory

◆ Concept
» Dynamically bind to shared modules at run-time

◆ Advantages
» On demand linking ensures that only those modules

that are actually used will be loaded
» Possibly allows modules to be replaced or upgraded at

run-time

◆ Disadvantages
» Possible performance penalty at run-time for invoking

new modules

» Overhead of indirect/interpretive access

» Complexity of the overall scheme

