
Page 1
CSCE 451/851
Steve Goddard Lecture 15

1

CSCE 451/851
Operating Systems Principles

http://www.cse.unl.edu/~goddard/Courses/CSCE451

Secondary Storage Management

Steve Goddard
goddard@cse.unl.edu

Page 2
C

SC
E

 451/851
S

teve G
oddard

L
ecture 15

2

Secondary Storage M
anagem

ent
D

isks —
 just like m

em
ory, only different

◆
W

hy have disks?
»

W
e

’ll ne
ve

r ha
ve

 e
n

ou
gh

 m
e

m
o

ry
❖

m
e

m
ory —

 341 K
B

/dolla
r or $3/M

B

❖
disks —

 3
3 M

B
/dollar or $0.03/M

B

➭
disks as short term

 storage
❖

sw
ap spa

ce for virtual m
em

ory syste
m

»
M

em
o

ry is volatile

➭
d

isks a
s lon

g term
 sto

rag
e

❖
files

Page 3
CSCE 451/851
Steve Goddard Lecture 15

3

Anatomy of a Disk
Basic components

0
1

2

s–1

...

Block/SectorTrack

Cylinder

PlatterSurface

Head

Spindle

Page 4
CSCE 451/851
Steve Goddard Lecture 15

4

Anatomy of a Disk
Example: Seagate 9GB Fast/Wide/Differential SCSI disk

◆ Specs:

» 12 platters

» 22 heads

» variable # of sectors/track

» 7,200 RPM
❖ average latency: 4.2 ms.

» Seek times
❖ track-to-track: 1 ms
❖ average: 7.9 ms

» 40MB/s peak transfer rate

» 11 arms

» 4,735 tracks

» 512 bytes/sector

Page 5
CSCE 451/851
Steve Goddard Lecture 15

5

Disk Operations
Data transfer in units of sectors

◆ Present disk with a sector address
» DA = (drive, surface, track, sector)

◆ Head moved to appropriate track
» “seek time”

◆ The appropriate head is enabled

◆ Wait for the sector to appear under
the head
» “rotational latency”

◆ Read/write the sector
» “transfer time”

Random access devices with non-uniform access times

Page 6
CSCE 451/851
Steve Goddard Lecture 15

6

Disk Addressing
Mapping a 3-D structure to a 1-D structure

◆ Mapping criteria
» block n+1 should be a close

as possible to block n

Track

Sector

Surface

0 n
?

p–1

0

1

t–1 ... 1 0

0 1s–1 ...

...

Page 7
CSCE 451/851
Steve Goddard Lecture 15

7

Disk Addressing
The impact of a good/bad file mapping

◆ Consider the time required to read/write a 1 MB file stored in
contiguous locations in the OS file block array
» File requires 2,048 sectors

◆ Array elements map to contiguous sectors on disk
» Middle of the disk

❖ 7.9 + 4.2 + 8.3 = 12.1 + 4.6 = 16.7 ms

Transfer time = (time per rev) × (# of revs required)

» Outside of disk
❖ 7.9 + 4.2 + 8.3 = 12.1 + 1.1 = 13.3 ms

» Center of disk
❖ 7.9 + 4.2 + 8.3 = 12.1 + 18.3 = 30.4 ms

◆ Array elements map to random sectors on disk
» 2,048× (7.9 + 4.2) = 24.8 secs!

2,048
3,712

2,048
14,848

2,048
928

Page 8
CSCE 451/851
Steve Goddard Lecture 15

8

Disk Addressing
Cylinder-based mappings

track 0
surface 0

track 0
surface 1

track 0
surface 2

cylinder 0 cylinder 1

...

track 0
surface p–1

track 1
surface 0

track 1
surface 1

...

... ...

◆ Sector address to block list
mapping
» s sectors
» p platters

(surface j, track i, sector k) = k + s(j + ip)

Page 9
CSCE 451/851
Steve Goddard Lecture 15

9

Disk Space Management
Device Directory

◆ A block(s) on disk containing...
» data structures storing names, locations, lengths, owner, etc.

of all files on disk
❖ a symbol table

» data structures storing free block list

◆ Stored at a fixed location on disk

◆ Directory operations
» search (find a file)

❖ linear search
❖ binary search
❖ hash table

» Create a file

» Delete a file
» List contents of a directory
» Backup

Page 10
CSCE 451/851
Steve Goddard Lecture 15

10

Device Directory
Allocated space representations

◆ Single-level directory
» easy to build
» all file names must be unique

◆ Two-level directory
» a separate directory for each

user/project/group

◆ Trees

◆ Acyclic graphs
» problems with...

❖ aliases
❖ file deletion
❖ backups

Page 11
CSCE 451/851
Steve Goddard Lecture 15

11

Device Directory
Free list representation

◆ Bit vector: 111111111111111001110101011101111...
» If bit i = 0 then block i is free, if i = 1 then it is allocated

» Simple to use but this can be a big vector:
❖ 17.5 million elements for a 9 GB disk (2.2 MB worth of bits)

» However, if free sectors are uniformly distributed across the
disk then the expected number of bits that must be scanned
before finding a “0” is

 n/r
where

n = total number of blocks on the disk,
 r = number of free blocks

❖ If a disk is 90% full, then the average number of bits to be scanned is
10, independent of the size of the disk

Page 12
CSCE 451/851
Steve Goddard Lecture 15

12

Device Directory
Other free list representation schemes

◆ In-situ linked lists

◆ Grouped lists

Next
group
block

Page 13
CSCE 451/851
Steve Goddard Lecture 15

13

File Allocation Methods
Contiguous allocation

◆ Directory entry specifies starting block & length

◆ Placement
» First-fit, best-fit, ...

◆ Pluses
» Best file read/write

performance
» Efficient sequential &

random access

◆ Minuses
» Fragmentation!
» Problems with file growth

❖ Pre-allocation?
❖ On-demand allocation?

Page 14
CSCE 451/851
Steve Goddard Lecture 15

14

File Allocation Methods
Linked allocation

◆ Pluses
» Easy to create, grow &

shrink files

» No fragmentation

◆ Minuses
» Impossible to do true random

access

» Reliability
❖ Break one link in the chain and...

◆ Files stored as a linked list of blocks

◆ Directory entry is a pointer to the first & last file blocks

Page 15
CSCE 451/851
Steve Goddard Lecture 15

15

File Allocation Methods
Indexed allocation

◆ Create a non-data block for each file called the index block
» A list of pointers to file blocks

◆ Directory entry is a pointer to the index block

◆ Pluses
» Easy to create, grow &

shrink files
» No fragmentation
» Supports direct access

◆ Minuses
» Overhead of storing index

when files are small
» How to handle large files?

Page 16
CSCE 451/851
Steve Goddard Lecture 15

16

◆ Linked index blocks

◆ Multilevel index blocks

Indexed Allocation
Handling large files

Page 17
CSCE 451/851
Steve Goddard Lecture 15

17

◆ Small files
» A single index block

◆ Medium size files
» An indirection block

Indexed Allocation
Indexed allocation in UNIX

Page 18
CSCE 451/851
Steve Goddard Lecture 15

18

Indexed Allocation in UNIX
Multilevel, indirection, index blocks

Device
Directory

2nd Level
Indirection

Block

n
Data

Blocks

n3

Data
Blocks

3rd Level
Indirection

Block

1st Level
Indirection

Block

n2

Data
Blocks

Page 19
CSCE 451/851
Steve Goddard Lecture 15

19

Disk Head Scheduling
Maximizing disk throughput

◆ In a multiprogramming/timesharing environment, disk
I/O requests are queued up

◆ The OS maximizes disk I/O throughput by minimizing
head movement through disk head scheduling

CPU

Disk

Other
I/O

Page 20
CSCE 451/851
Steve Goddard Lecture 15

20

Disk Head Scheduling
Examples

◆ Assume a queue of requests exists to read/write tracks:
» 150 16 147 14 72 83 and the head is on track 65

◆ FCFS scheduling results in the head moving 550 tracks
» Can we do better?

0 150125100755025

Page 21
CSCE 451/851
Steve Goddard Lecture 15

21

Disk Head Scheduling
Minimizing head movement

◆ Greedy scheduling: shortest seek time first
» Rearrange queue from: 150 16 147 14 72 83
 To: 72 83 147 150 16 14

◆ SSTF results in the head moving 221 tracks
» Can we do better?

0 150125100755025

Page 22
CSCE 451/851
Steve Goddard Lecture 15

22

Disk Head Scheduling
Optimal scheduling

◆ Rearrange queue from:150 16 147 14 72 83
 To: 16 14 72 83 147 150

◆ SCAN scheduling
» Move the head in one direction until all requests have been

serviced and then reverse

» Results in the head moving 187 tracks

0 150125100755025

Page 23
CSCE 451/851
Steve Goddard Lecture 15

23

Disk Head Scheduling
Other variations

◆ C-SCAN scheduling (“Circular”-SCAN)
» Move the head in one direction until an edge of the disk is

reached and then reset to the opposite edge

◆ LOOK scheduling
» C-SCAN except the head is reset when no more requests exist

between the current head position and the approaching edge of
the disk

0 150125100755025

Page 24
CSCE 451/851
Steve Goddard Lecture 15

24

Speeding Up Disk I/O
Disk architectures

◆ Disk striping
» Blocks broken into sub-blocks that are stored on separate disks

❖ similar to memory inter-leaving

» Provides for higher disk bandwidth through a larger effective
block size

1 2 3

Page 25
CSCE 451/851
Steve Goddard Lecture 15

25

Speeding Up Disk I/O
Disk architectures

◆ RAID (redundant array of inexpensive disks) disks
» Bit-wise striping of the disks (RAID-3) or
» Block-wise striping of the disks (RAID-5)
» Provides better performance & reliability

◆ Example: storing the bit-string 101

1 2 3

1 x x x x
x x x x x
x x x x x

0 x x x x
x x x x x
x x x x x

1 x x x x
x x x x x
x x x x x

Page 26
CSCE 451/851
Steve Goddard Lecture 15

26

RAID Disks
Improving reliability & availability

◆ Block interleaved parity striping
» Allows one to recover from the crash of any one disk

» Example: storing 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3

1 0 0 0
1 0 0 1
1 0 1 0

1 1 1 0
1 1 1 1
0 0 0 0

Block 1

1 0 1 1
1 1 0 0
1 1 0 1

Block 2 Block 3

Layout on a
non-RAID disk:

0 0 0 1
0 0 1 0
0 0 1 1

Block 4

1 1 1 1
1 1 1 1
0 0 0 0

0 0 0 0
1 1 1 1
0 0 0 0

0 0 1 1
0 0 1 1
0 0 1 1

0 1 0 1
0 1 0 1
0 1 0 1

1 0 0 1
0 1 1 0
0 1 1 0

Block 1
Disk 1

Block 1
Disk 2

Block 1
Disk 3

Block 1
Disk 4

Block 1
Disk 5

RAID
layout:

