	Operating Systems Principles
	Secondary Storage Management
	Steve Goddard goddard@cse.unl.edu
	http://www.cse.unl.edu/~goddard/Courses/CSCE451
CSCE 451/85 Steve Goddar	
6 1	Secondary Stor: Disks — just like me • Why have disks? • We'll never have • memory – 341 • disks as short ter • swap space for • Memory is volat © disks as long ter • files
Lecture 15	age Management mory, only different e enough memory KB/dollar or \$3/MB MB/dollar or \$3.03/MB rn storage ile in storage

CSCE 451/851 Steve Goddard

Lecture 15

Page 5

CSCE 451/851 Steve Goddard

Lecture 15

CSCE 451/851 Steve Goddard

Lecture 15

Page 7

CSCE 451/851 Steve Goddard

Lecture 15

Disk Space Management Device Directory

- A block(s) on disk containing...
 » data structures storing names, locations, lengths, owner, *etc.* of all files on disk
 a symbol table

 - » data structures storing free block list
- ◆ Stored at a fixed location on disk

◆ Directory operations

- » search (find a file) » Delete a file
 - linear search » List contents of a directory
 - binary search » Backup
 - ♦ hash table
- » Create a file

CSCE 451/851 Steve Goddard

Lecture 15

Page 9

CSCE 451/851 Steve Goddard

Lecture 15

Device Directory

Free list representation

- Bit vector: 11111111111111001110101011101111...
 - » If bit i = 0 then block *i* is *free*, if i = 1 then it is *allocated*
 - » Simple to use but this can be a big vector:
 \$ 17.5 million elements for a 9 GB disk (2.2 MB worth of bits)
 - » However, if free sectors are uniformly distributed across the disk then the expected number of bits that must be scanned before finding a "0" is n/r

where

- n = total number of blocks on the disk, r = number of free blocks
- ✤ If a disk is 90% full, then the average number of bits to be scanned is 10, independent of the size of the disk

CSCE 451/851 Steve Goddard

Lecture 15

Page 11

CSCE 451/851 Steve Goddard

Lecture 15

Speeding Up Disk I/O Disk architectures

Disk striping

- » Blocks broken into sub-blocks that are stored on separate disks

 similar to memory inter-leaving
- » Provides for higher disk bandwidth through a larger effective block size

CSCE 451/851 Steve Goddard

Lecture 15

Page 23

CSCE 451/851 Steve Goddard

Lecture 15

RAID Disks Improving reliability & availability							
 ◆ Block » Alle » Exa 	interleave ows one to a mple: storing	ed parity recover fro ng 8, 9, 10,	striping m the crash 11, 12, 13	n of any one , 14, 15, 0, 1	disk 1, 2, 3		
Layout non-RA	on a AID disk:	1 0 0 0 1 0 0 1 1 0 1 0 Block 1	1011 1100 1101 Block 2	1 1 1 0 1 1 1 1 0 0 0 0 Block 3	0 0 0 1 0 0 1 0 0 0 1 1 Block 4		
RAID layout:	1 1 1 1 1 1 1 1 0 0 0 0 Block 1	$ \begin{array}{c} 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} $ Block 1 Disk 2	0 0 1 1 0 0 1 1 0 0 1 1 Block 1 Dick 3	0 1 0 1 0 1 0 1 0 1 0 1 Block 1 Dick 4	1001 0110 0110 Block 1		

CSCE 451/851 Steve Goddard

Lecture 15

Page 25

CSCE 451/851 Steve Goddard

Lecture 15