CSCE 451/851
 Operating Systems Principles
 Processor Scheduling

Steve Goddard
goddard@cse.unl.edu
http://www.cse.unl.edu/~goddard/Courses/CSCE451
preppog әләјS
IS8/ISt GOSコ

C: CE 4:
St ve Gi 范

Why Schedule?

Scheduling goals

- Example: two processes execute in parallel


```
        c
        end.for
```

- Performance without scheduling
${ }_{P_{2}}^{\mathrm{P}_{2}}$
${ }^{\mathrm{P}} \mathrm{P}_{2}$

- Performance with scheduling
$\xrightarrow{\mathrm{P}_{2}}{\underset{\sim}{100}}_{\square}^{\square}$

Long Term Scheduling

Balancing CPU \& I/O demand

- Example - The Convoy Effect
» 1 CPU bound job
» $n \gg 1$ I/O bound jobs

Short Term Scheduling

How to schedule - Implementing a context switch

Implementing a Context Switch

Dispatching

- Case 1: Preemption
- Case 2: Yield

"running's" dispatch

$$
\begin{array}{|l|}
\hline \text { dispatch () } \\
\text { begin } \\
\text { save state of running> } \\
\text { end } \dot{\vdots} \text { dispatch } \\
\hline
\end{array}
$$

"next's" dispatch:
dispatch ()
 clave state of
end dispate ne ne

Scheduling Policies

 Evaluation criteria- CPU/device utilization
- System throughput
- Waiting time
- Turnaround time
- Response time

Scheduling Policies

Shortest-Job-First (SJF)

- Select the job that is closest to finishing
» enqueue jobs in order of estimated completion time
t_{n} - duration of the $n^{\text {th }}$ CPU burst
τ_{n+1} - predicted duration of the $n+1^{s t}$ CPU burst

$$
\tau_{n+1}=\alpha t_{n}+(1-\alpha) \tau_{n} \text {, for } 0 \leq \alpha \leq 1
$$

- An optimal policy for minimizing response time

XYZ:	P_{1}	P_{2}	P_{4}		P_{5}	P_{3}		P_{6}
0	r_{1}	r_{2}		$r_{4}-c_{3}$	$r_{5}-c_{3}$	$r_{3}+c_{4}+c_{5}$	r_{6}	

Scheduling Policies

Round-Robin Scheduling (RR)

- Allocate the processor in discrete units called quantums (or time-slices)
- Switch to the next ready process at the end of each quantum » Processes execute every $(n-1) q$ time units

