CSCE 451/851

Operating Systems Principles

Deadlock

Steve Goddard

goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE451

CSCE 451/851
Steve Goddard

Deadlock

Review — Deadlock in mutual exclusion algorithms

0 Each process is “waiting” for the other process to do

something

» Nothing (constructive) is ever done — both processes are|

forever stuck

gl obal var inCS: array[1l..2] of boolean := (FALSE, FALSE)

process Pi
begin
| oop
inCcs 1] := TRUE
while inCq 2] do
NOOP
end while
<critical section>
inCS 1] := FALSE
end | oop
end P1

process Pz
begi n
| oop
inCcg 2] := TRUE
while inCq1] do
NOOP
end while
<critical section>
inCS 2] := FALSE
end | oop
end Pz

Lecture 9

Page 1

CS[E 45

Steye Go &

CSCE 451/851
Steve Goddard

Deadlock
Definition

oD

E E semaphore/condition
queues

A set of processes are deadlocked when every processin
the set iswaiting for an event that can only be generated by
some process in the set
Example: a computer system with two processes
0 aprocess that is printing alarge PostScript job is waiting for more memory
0 avisualization process with lots of memory iswaiting to use the printer

Lecture 9

Page 3

CSCE 451/851
Steve Goddard

A Formal Model of Deadlock

Definitions

0 Basic components of any resource allocation problem
» Processes
» Resources

0 Paradigm of resource usage

process P
begin
request (resource-type, anount)
<usethe resource>
rel ease(resource-type, anount)
end P

Lecture 9

Page 4

Resources
Two classes of resources

0 Serially reusable (SR) resources
» a constant number of units
» boolean state (allocated or unallocated)
» no sharing
» units of the resource created by the system (not by processes
using the resource)
0 Consumable resources (CR)
» the number of available units of the resource varies over tin|
» a producer process may release units of the resource it did [not
acquire {.e., a process may create units of the resource)
» in general, acquired resources are not returned, they are
consumed

[]

CSCE 451/851
Steve Goddard Lecture 9

Page 5

CSCE 451/851
Steve Goddard

A Graph Theoretic Model of Deadlock
The resour ce allocation graph (RAG)

0 Model the state of a computer system as a directed
graphG=(V, E)
» V = the set of vertices H, ...,P} O0{R,,R}

» O =i

» E = the set of edges =
{edgesrom a resourcéo a process}i
{edgesrom a proces$o a resource}

Qmﬁm@
: edge edge

P R Py

Lecture 9

Page 6

CSCE 451/851
Steve Goddard

Resource Allocation Graphs
Examples

0 A printing process that is waiting for more memory
& alarge memory process that is waiting to print

G ={print, visualization} 0 {memory, printer}

Print Memory Visualization

Process Process

N~

Printer

Lecture 9

Page 7

CSCE 451/851
Steve Goddard

A Graph Theoretic Model of Deadlock

Resour ce allocation graphs & deadlock

0 Theorem: If a graph does not contain a cycle then no
processes are deadlocked
» A cycle in aBRAG is a necessary condition for deadlock

0 Isthe existence of a cycle a sufficient condition?

Memory

Print \Visualization
Process Process
Printer
Lecture 9

Page 8

CSCE 451/851
Steve Goddard

A Graph Theoretic Model of Deadlock

Resour ce allocation graphs & deadlock

0 Theorem: If thereisonly a single unit of all resources
then a set of processes are deadlocked iff the processes
& resources forma cycle in the RAG

Memory
Print Visualization
Pro Process

Printer

Lecture 9

Page 9

CSCE 451/851
Steve Goddard

Using the Theory
An operational definition of deadlock

0 A set of processes are deadlocked iff the
following conditions hold simultaneously
1. Mutual exclusion is required
2. A process is in a “hold-and-wait” state
3. Preemption is not allowed
4. Circular waiting exists
(A cycle exists in th&AG)

Lecture 9

Page 10

Dealing With Deadlock

Deadlock prevention & avoidance

0 Adopt some resource allocation protocol that ensures
deadlock can never occur
» Deadlock prevention
» Deadlock avoidance

0 Deadlock prevention
» Ensure that one of the four deadlock conditions never occy
0 Mutex?
0 Hold & Wait?
0 Non-preemption?
o Circular waiting?

rs

Lecture 9

Page 11

CSCE 451/851
Steve Goddard

Dealing With Deadlock

Deadlock avoidance

Examine each resource request and determine whether
or not granting the request can lead to deadlock

0 Define a set of vectors & matrices that characterize the
current state of all resources & processes

» resource allocation state matrix
R
n; = the number of units of resource j L R Ry N

hdd by promi il 21‘1 :1.2 n1‘3 b nl,r
» maximum claim matrix Pl .
n; = the maximum number of units of o I
resource i that the processj will .
ever require smultaneously b 1 Mo n,,
» available vector
n; = the number of units of <n, n, N, ..., N>
resource i that are unallocated

Lecture 9

Page 12

CSCE 451/851
Steve Goddard

Deadlock Avoidance
State definitions

0 A resource allocation state is safe if the systemcan
allocate resources to each process up to its maximum claim
such that the system can not deadlock

» There must be an ordering of the proce&eB,, ...,P,, such that
for all processeB,,

=
MAX_CLAIM, —ALLOCATION;, < AVAIL +_zlALLOCATIONPJ
d d i

i.e., the number of resources tliacan request is less than the
resources available now plus those held by lower numbered
processes in the sequence

» This ordering of processes is calleshfe sequence
0 If asafe sequence exists then there exists a process (P,) that can execute to
completion
0 P, can execute to completion at worst after processes P,- P complete

Lecture 9

Page 13

CSCE 451/851
Steve Goddard

Deadlock Avoidance
Example

0 A computer system with 5 processes and 4 resources

ALLOCATION MAX_CLAIM AVAILABLE
RRRR RRRR RRRR,

PLO0O12 0012 1520
P, 1000 1750
P, 1353 2356
P,0632 0652
P,0O14 0656

@

O Isthis system in a safe state?
» Does there exist a safe sequence?
0 an ordering of the processes such that:

i-1
MAX_CLAIM;, — ALLOCATION,, <AVAIL + ZlALLOCATI ONa
j=

Lecture 9

Page 14

CSCE 451/851
Steve Goddard

Deadlock Avoidance Example
Safe sequence computation

1. Compute the largest possible resource request a process can make

MAX_CLAIM ALLOCATION MAX_REQUEST
RRRR RRRR, RRRR,
P, 0012 0012 0000
P, 1750 _ 1000 — 0750
P, 2356 1353 - 1003
P, 0652 06 32 0020
P. 06 56 00114 06 42

@

2. Attempt to build a safe sequence

Lecture 9

Page 15

CSCE 451/851
Steve Goddard

Deadlock Avoidance Example
Safe sequence computation

ALLOCATION MAX_CLAIM AVAILABLE | MAX_REQUEST
RRRR, RRRR RRRR | RRRR
P, 0012 0012 1520 0000
P, 1000 1750 0750
P, 1353 2356 1003
P, 0632 0652 0020
P, 0014 0656 0642

)

» Does there exist a procégssuch that
MAX_REQUEST, SAVAILABLE?
1

» If no, then there is no safe sequence, the state is unsafe
» If yes, addP, to the sequence
» SetAVAILABLE = AVAILABLE + ALLOCATION,

I

Lecture 9

Page 16

CSCE 451/851
Steve Goddard

Deadlock Avoidance Example
Safe sequence computation

ALLOCATION MAX_CLAIM AVAILABLE MAX_REQUEST

RRRR, RRRR RRRR | RRRR
P, 0012 0012 2100 0000
P, 0420 1750 1330
P, 1353 2356 1003
P, 0632 0652 0020
P, 0014 0656 0642

)

0 What if P, wants to changeits allocation to <0, 4, 2, 0>?

Lecture 9

Page 17

CSCE 451/851
Steve Goddard

Deadlock Avoidance Example
Banker's algorithm

Avoiding a “run on the bank”

0 Simulate the effect of granting a process’s resource

allocation request
0 Then check to see if a safe sequence exists

Issues

0 Complexity?

Lecture 9

Page 18

CSCE 451/851
Steve Goddard

Banker’s Algorithm
I nteresting special cases

0 Single instance resources

0 Introduce a new edge into the RAG — aclaim edge
» Indicates that a proces®my request a resource in the future

\]
\ /
i
0 A request can be granted only if the conversion of a
claim edge into an allocation edge does not create a

cycle

Lecture 9

Page 19

CSCE 451/851
Steve Goddard

Dealing With Deadlock
Deadlock detection & recovery

0 Deadlock prevention & avoidance
» Resource allocation protocols that prohibit deadlock

0 The common approach

» Let the system deadlock iken deal with it
0 Detect that a set of processes are deadlocked
0 Recover from the deadlock

Lecture 9

Page 20

CSCE 451/851
Steve Goddard

Deadlock Detection & Recovery
Detecting deadlock

0 Run Banker’s algorithm & see if a safe sequence
exists
» ReplaceMAX_REQUEST with simply “REQUEST”

» If a safe sequence does not exist then the system is
deadlocked

0 How often should the OS check for deadlock?
» After every resource request?
» Only when we suspect deadlock has occurred?

Lecture 9

Page 21

CSCE 451/851
Steve Goddard

Deadlock Detection & Recovery
Recovering from deadlock

0 Abort all deadlocked processes & reclaim their
resources

0 Abort one process at atime until al cyclesin the
RAG are eliminated

0 Whereto start?
» Low priority processes
» Processes with the most resources

» ..

Lecture 9

Page 22

