
Page 1
CSCE 451/851
Steve Goddard Lecture 9

1

CSCE 451/851
Operating Systems Principles

Deadlock

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE451

Page 2
C

SC
E

 451/851
S

teve G
oddard

L
ecture 9

2

D
eadlock

R
eview

 —
 D

eadlock in m
utual exclusion algorithm

s

◆
E

ach process is “w
aiting” for the other process to do

som
ething

»
N

o
th

in
g (co

n
stru

ctive
) is e

ve
r do

n
e

 —
 bo

th
 p

roce
sse

s a
re

forever stuck

p
r
o
c
e
s
s

P
1

b
e
g
i
n

l
o
o
p

i
n
C
S
[
1
]

:
=

T
R
U
E

w
h
i
l
e

i
n
C
S
[
2
]

d
o

N
O
O
P

e
n
d

w
h
i
l
e

<
critical section>

i
n
C
S
[
1
]

:
=

F
A
L
S
E

e
n
d

l
o
o
p

e
n
d

P
1

p
r
o
c
e
s
s

P
2

b
e
g
i
n

l
o
o
p

i
n
C
S
[
2
]

:
=

T
R
U
E

w
h
i
l
e

i
n
C
S
[
1
]

d
o

N
O
O
P

e
n
d

w
h
i
l
e

<
critical section>

i
n
C
S
[
2
]

:
=

F
A
L
S
E

e
n
d

l
o
o
p

e
n
d

P
2

g
l
o
b
a
l

v
a
r

i
n
C
S

:

a
r
r
a
y
[
1
.
.
2
]

o
f

b
o
o
l
e
a
n

:
=

(
F
A
L
S
E
,
F
A
L
S
E
)

Page 3
CSCE 451/851
Steve Goddard Lecture 9

3

Deadlock
Definition

A set of processes are deadlocked when every process in
the set is waiting for an event that can only be generated by
some process in the set
Example: a computer system with two processes

❖ a process that is printing a large PostScript job is waiting for more memory

❖ a visualization process with lots of memory is waiting to use the printer

RunningReady

Waiting

semaphore/condition
queues

Page 4
CSCE 451/851
Steve Goddard Lecture 9

4

A Formal Model of Deadlock
Definitions

◆ Basic components of any resource allocation problem
» Processes

» Resources

◆ Paradigm of resource usage

process P
begin
 request(resource-type, amount)
 <use the resource>
 release(resource-type, amount)
end P

Page 5
CSCE 451/851
Steve Goddard Lecture 9

5

Resources
Two classes of resources

◆ Serially reusable (SR) resources
» a constant number of units

» boolean state (allocated or unallocated)

» no sharing
» units of the resource created by the system (not by processes

using the resource)

◆ Consumable resources (CR)
» the number of available units of the resource varies over time
» a producer process may release units of the resource it did not

acquire (i.e., a process may create units of the resource)
» in general, acquired resources are not returned, they are

consumed

Page 6
CSCE 451/851
Steve Goddard Lecture 9

6

A Graph Theoretic Model of Deadlock
The resource allocation graph (RAG)

◆ Model the state of a computer system as a directed
graph G = (V, E)
» V = the set of vertices = {P1, ..., Pn} ∪ {R1, ..., Rn}

» E = the set of edges =
 {edges from a resource to a process} ∪
 {edges from a process to a resource}

Pi Rj

Pi Rj
Pk

request
 edge

allocation
 edge

Page 7
CSCE 451/851
Steve Goddard Lecture 9

7

Resource Allocation Graphs
Examples

◆ A printing process that is waiting for more memory
& a large memory process that is waiting to print

G = {print, visualization} ∪ {memory, printer}

Print
Process

Memory

Printer

Visualization
Process

Page 8
CSCE 451/851
Steve Goddard Lecture 9

8

A Graph Theoretic Model of Deadlock
Resource allocation graphs & deadlock

◆ Theorem: If a graph does not contain a cycle then no
processes are deadlocked
» A cycle in a RAG is a necessary condition for deadlock

◆ Is the existence of a cycle a sufficient condition?

Print
Process

Memory

Printer

Visualization
Process

Page 9
CSCE 451/851
Steve Goddard Lecture 9

9

A Graph Theoretic Model of Deadlock
Resource allocation graphs & deadlock

◆ Theorem: If there is only a single unit of all resources
then a set of processes are deadlocked iff the processes
& resources form a cycle in the RAG

Print
Process

Memory

Printer

Visualization
Process

Page 10
CSCE 451/851
Steve Goddard Lecture 9

10

Using the Theory
An operational definition of deadlock

◆ A set of processes are deadlocked iff the
following conditions hold simultaneously
1. Mutual exclusion is required

2. A process is in a “hold-and-wait” state

3. Preemption is not allowed

4. Circular waiting exists

(A cycle exists in the RAG)

Page 11
CSCE 451/851
Steve Goddard Lecture 9

11

Dealing With Deadlock
Deadlock prevention & avoidance

◆ Adopt some resource allocation protocol that ensures
deadlock can never occur
» Deadlock prevention

» Deadlock avoidance

◆ Deadlock prevention
» Ensure that one of the four deadlock conditions never occurs

❖ Mutex?

❖ Hold & Wait?

❖ Non-preemption?

❖ Circular waiting?

Page 12
CSCE 451/851
Steve Goddard Lecture 9

12

Dealing With Deadlock
Deadlock avoidance

Examine each resource request and determine whether
or not granting the request can lead to deadlock

◆ Define a set of vectors & matrices that characterize the
current state of all resources & processes

R1 R2 R3 ... Rr

P1

P2

P3

Pp

n1,1 n1,2 n1,3 ... n1,r

n2,1

n3,1

np,1 np,r

n2,2

...

...

...

...

...

» resource allocation state matrix
nij = the number of units of resource j

 held by process i

» maximum claim matrix
nij = the maximum number of units of

 resource i that the process j will
 ever require simultaneously

» available vector
ni = the number of units of

 resource i that are unallocated
<n1, n2, n3, ..., nr>

Page 13
CSCE 451/851
Steve Goddard Lecture 9

13

Deadlock Avoidance
State definitions

◆ A resource allocation state is safe if the system can
allocate resources to each process up to its maximum claim
such that the system can not deadlock
» There must be an ordering of the processes P1, P2, ..., Pp, such that

for all processes Pi,

i.e., the number of resources that Pi can request is less than the
resources available now plus those held by lower numbered
processes in the sequence

» This ordering of processes is called a safe sequence
❖ If a safe sequence exists then there exists a process (P1) that can execute to

completion
❖ Pj can execute to completion at worst after processes P1- Pj–1 complete

MAX_CLAIMPi
 – ALLOCATIONPi

 ≤ AVAIL + ΣALLOCATIONPjj=1

i–1

Page 14
CSCE 451/851
Steve Goddard Lecture 9

14

Deadlock Avoidance
Example

◆ A computer system with 5 processes and 4 resources

◆ Is this system in a safe state?
» Does there exist a safe sequence?

❖ an ordering of the processes such that:

ALLOCATION MAX_CLAIM AVAILABLE
R1 R2 R3 R4

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

1 5 2 0
R1 R2 R3 R4R1 R2 R3 R4

P1

P2

P3

P4

P5

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

P1 P2 P3 P4 P5

R1 R2 R3 R4

MAX_CLAIMPi
 – ALLOCATIONPi

 < AVAIL + ΣALLOCATIONPjj=1

i–1

Page 15
CSCE 451/851
Steve Goddard Lecture 9

15

Deadlock Avoidance Example
Safe sequence computation

1. Compute the largest possible resource request a process can make

2. Attempt to build a safe sequence

P1

P2

P3

P4

P5

0 0 0 0
0 7 5 0
1 0 0 3
0 0 2 0
0 6 4 2

R1 R2 R3 R4

MAX_REQUESTALLOCATION

R1 R2 R3 R4

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

MAX_CLAIM

R1 R2 R3 R4

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

=–

P1 P2 P3 P4 P5

R1 R2 R3 R4

Page 16
CSCE 451/851
Steve Goddard Lecture 9

16

Deadlock Avoidance Example
Safe sequence computation

» Does there exist a process Pi such that
 MAX_REQUESTPi

 Š AVAILABLE?

» If no, then there is no safe sequence, the state is unsafe

» If yes, add Pi to the sequence

» Set AVAILABLE = AVAILABLE + ALLOCATIONPi

ALLOCATION MAX_CLAIM AVAILABLE

R1 R2 R3 R4

P1

P2

P3

P4

P5

0 0 1 2
1 0 0 0
1 3 5 3
0 6 3 2
0 0 1 4

R1 R2 R3 R4

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

1 5 2 0 0 0 0 0
0 7 5 0
1 0 0 3
0 0 2 0
0 6 4 2

R1 R2 R3 R4 R1 R2 R3 R4

MAX_REQUEST

Page 17
CSCE 451/851
Steve Goddard Lecture 9

17

Deadlock Avoidance Example
Safe sequence computation

◆ What if P2 wants to change its allocation to <0, 4, 2, 0>?

ALLOCATION MAX_CLAIM AVAILABLE

R1 R2 R3 R4

P1

P2

P3

P4

P5

0 0 1 2
0 4 2 0
1 3 5 3
0 6 3 2
0 0 1 4

R1 R2 R3 R4

0 0 1 2
1 7 5 0
2 3 5 6
0 6 5 2
0 6 5 6

2 1 0 0 0 0 0 0
1 3 3 0
1 0 0 3
0 0 2 0
0 6 4 2

R1 R2 R3 R4 R1 R2 R3 R4

MAX_REQUEST

Page 18
CSCE 451/851
Steve Goddard Lecture 9

18

Deadlock Avoidance Example
Banker’s algorithm

◆ Simulate the effect of granting a process’s resource
allocation request

◆ Then check to see if a safe sequence exists

Avoiding a “run on the bank”

◆ Complexity?

Issues

Page 19
CSCE 451/851
Steve Goddard Lecture 9

19

Banker’s Algorithm
Interesting special cases

◆ Single instance resources

◆ Introduce a new edge into the RAG — a claim edge
» Indicates that a process may request a resource in the future

◆ A request can be granted only if the conversion of a
claim edge into an allocation edge does not create a
cycle

Page 20
CSCE 451/851
Steve Goddard Lecture 9

20

Dealing With Deadlock
Deadlock detection & recovery

◆ Deadlock prevention & avoidance
» Resource allocation protocols that prohibit deadlock

◆ The common approach
» Let the system deadlock & then deal with it

❖ Detect that a set of processes are deadlocked

❖ Recover from the deadlock

Page 21
CSCE 451/851
Steve Goddard Lecture 9

21

Deadlock Detection & Recovery
Detecting deadlock

◆ Run Banker’s algorithm & see if a safe sequence
exists
» Replace MAX_REQUEST with simply “REQUEST”

» If a safe sequence does not exist then the system is
deadlocked

◆ How often should the OS check for deadlock?
» After every resource request?

» Only when we suspect deadlock has occurred?

Page 22
CSCE 451/851
Steve Goddard Lecture 9

22

Deadlock Detection & Recovery
Recovering from deadlock

◆ Abort all deadlocked processes & reclaim their
resources

◆ Abort one process at a time until all cycles in the
RAG are eliminated

◆ Where to start?
» Low priority processes

» Processes with the most resources

» ...

