
EECS 678: Introduction to Operating Systems

IPC: Course Notes For Reference

Unix is a multitasking operating system which o�ers rich functionality in interprocess

communication (IPC). Here we take a brief look at system calls which are used in process

manipulation and interprocess communication. Process manipulation is important as it

leads to multitasking and interprocess communication is important as it leads to network

programming.

Process

A process in Unix terms is an instance of an executing program. Each process incorpo-

rates program code, the data values within program variables, and values held in hardware

registers, program stack etc.

Associated with each process is a process control block (PCB) which stores all the

information related to the process.

Unix provides a handful of system calls for creation and manipulation of processes.

� fork Creates a new process.

� exec Overlays the memory space of the process with a new program.

� wait synchronizes processes.

� exit Terminates a process.

The fork System Call.

Usage

int pid;

pid = fork();

The fork is the basic process creation system call in Unix, which transforms Unix into

a multitasking operating system.

Any Unix process may create other processes. The calling process is called the parent

process and the one being created is called the child process. Once created, both child

and parent execute concurrently, resuming execution immediately after the call to fork, as

shown in �gure 1.

Figure 1 demonstrates the notion of process creation more clearly. The arrow labeled

PC (Program Counter) shows the statement currently being executed. Before the call to

fork one process exists and after the call to fork child process is created and now both

processes run together (concurrently). From the �gure 1 you can see that the child process

is an exact replica of the parent process, (its PCB, code and data segments); immediately

after the fork system call both the program counters point to the same instruction.

The call to fork returns an integer which is called the process id (pid). It is value of pid

that distinguishes the child and the parent. In the parent pid is set to a non-zero, positive

integer. In the child it is set to zero.

1

/* example: fork demonstration */

void main() {

int pid; /* holds the process id value in parent */

printf(" So far one process \n");

printf(" Calling fork \n");

pid = fork();

if (pid == 0)

printf("I am the child\n");

else if (pid > 0)

printf("I am the parent\n");

else

printf("fork failed\n");

}

.

.

.
�

�

�

fork called

Before fork

After fork

PC PC

printf("Before fork");

printf("After fork");

pid = fork();

pid = fork();

printf("Before fork");

printf("After fork");

Figure 1 The fork system call

Child

pid = fork();

printf("Before fork");

printf("After fork");

PC

Original

Original (also the parent)

2

The exec System Call.

The only way in which a program is executed in Unix is for an existing program to issue

an exec system call. The exec calls overlays the memory space of the calling process with a

new program. When used together, fork and exec provides the means for the programmer

to start another program, yielding multitasking.

(exec is a family of system calls; see the man pages for more information.)

The sample code provided below shows how fork and exec can be used together to

achieve multitasking. Here the parent process creates a child and then uses execl system

call to overlay the ls program on top of the child's address space causing it to run the ls

program. The wait system call (discussed next) is used to suspend the parent process till

the child terminates.

Figure 2 illustrates this idea. There you see once the child process executes the execl

system call, the address space of the child is replaced by the ls program.

/* example fork exec together */

void main() {

int pid;

pid = fork();

/* child executing ls program */

if (pid == 0) {

execl("/bin/ls", "ls", "-l", (char *)0);

}

/* parent waits for child to finish */

if (pid > 0)

wait((int *)0);

}

3

�

�

PC

exec called

Before exec

After exec

PC

Figure 2 The exec system call

execl("/bin/ls","ls","-l",(char *)0);

The �rst line of "ls" program

The wait System Call.

Usage

int status, retval;

retval = wait(&status);

or

retval = wait((int *)0);

The wait is a basic process synchronization call in Unix. It temporarily suspends the

execution of the parent process. In certain applications, the parent process is suspended

using wait system call while the child process is running; the waiting parent process restarts

once the child �nishes execution.

The exit System Call.

Usage

int status;

exit(status);

The exit system call is used to terminate a process. A process also stops when it reaches

the end of the main function or when a return statement is executed in the main function.

4

Interprocess Communication (IPC)

For processes to cooperate in performing a task, they need to share data. The funda-

mentals of network programming lies in processes' ability to share data among themselves.

Unix allows concurrent processes to communicate by using a variety of IPC methods, in

the form of pipes, signals, message queues, shared memory, semaphores and sockets. Here

we discuss only the basic ideas of pipes and sockets.

Pipes

Usage

int p[2];

int retval;

retval = pipe(p);

A call to pipe creates a pair of �le descriptors, pointed to a pipe inode. Pipes are nor-

mally used to couple the output of one program to the input of of another program without

having to store data in an intermediate �le. They are usually used as unidirectional com-

munication channels, which operate in First In First Out (FIFO) basis.

Note: Do not confuse this with the FIFO IPC mechanism.

Usually, pipe is called with a two integer array, which will hold the �le descriptors

associated with the pipe. The �le descriptor denoted by the �rst element in the array (p[0])

opens the pipe for reading while the other �le descriptor (p[1]) opens the pipe for writing.

Once created we can use pipes to communicate with the process itself or with any child

process.

Sample code below demonstrates how a pipe is created using pipe system call and the

how the returned �le descriptors can be used to writing down the pipe and reading from it.

#define MSGSIZE 16

char *msg1 = "Hello world #1";

char *msg2 = "Hello world #2";

void main() {

char buf[MSGSIZE];

int p[2], j;

if (pipe(p) < 0) {

perror("pipe call");

exit(1);

}

/* writing down the pipe */

write(p[1], msg1, MSGSIZE);

write(p[1], msg2, MSGSIZE);

5

/* read from the pipe */

for (j=0; j<2; j++) {

read(p[0], buf, MSGSIZE);

printf("%s\n", buf);

}

}

-

�

.

.
-

-

Figure 2 Process sending data to

itself through a pipe.

Process Parent Child

p[1] p[1]

p[0] p[0]

Figure 3 Parent sending data to the child

through a pipe.

reading

reading

writing writing

Bu�er

Bu�er

Note: A bu�er is a system maintained data structure accessible to both ends of the pipe.

The writer writes on to the bu�er while the reader reads from it.

Sockets

A socket is an end point for communication which assumes client-server relationship

between the processes.

The server normally waits for requests at a �xed address. The address is a combination

of the machine Internet address and the port address at which the service is o�ered. Clients

get the service by sending requests to the �xed address of the server.

Associated with sockets are a handful of system calls. Sockets are created by the socket

system call which returns a socket descriptor on success. Both the client and the server

call socket initially. The server then calls bind to establish its address. The listen call

speci�es the number of requests that can wait on the queue. Servers handle these requests

in di�erent ways depending on the application, which we are not going to discuss in detail

here. Interested readers may read Internetworking with TCP/IP - vol 3 by Douglas B.

Comer.

The client, after calling socket, may call bind to establish its address though it is not

necessary. The client then calls connect to request connection to the server.

At this point the client and the server are in communication. They can use the read

and write system calls for communication. Once the communication is done, close is called

to close the connection.

6

Standard Input, Standard Output, Standard Error

A Unix shell automatically opens three �les for any executing program.

� standard input (stdin) - keyboard by default.

� standard output (stdout) - screen by default.

� standard error (stderr) - screen by default.

Within the program they are always identi�ed by �le descriptors 0, 1, 2 respectively.

Filters

By now you should be familiar with commands like this at the shell prompt.

$ ls | wc

Did you ever wonder how this works ? Here the output of the ls program is sent to the

input of the program wc through a pipe.

To achieve this, before invoking the wc program, the shell sends standard output of ls

to the write end of the pipe and standard input of wc to the read end of the pipe. This is

achieved with the dup2 or dup system calls.

The dup2 system call

Usage

dup2(int oldfd, int newfd);

The system call dup2 makes new �le descriptor (newfd) be the copy of old �le descriptor

(oldfd), closing new �le descriptor �rst if necessary. Hence coupling of oldfd to newfd is

achieved.

dup2(fd, 1); /* now fd coupled to stdout */

/* anything written to fd now be sent to stdout */

The dup system call

The dup is called with some �le descriptor as an argument, and returns a new �le

descriptor that refers to the same �le. The new �le descriptor value will be the lowest

number available in the system. By closing any of stdin, stdout or stderr we can couple any

�le descriptor to any of the standard �le descriptors as shown below.

close(1); /* stdout is closed */

dup(fd); /* now fd coupled to stdout */

Read the man pages for more information.

DN/CL 678ipc.TEX January 26, 1998

7

