
EECS 678: Introduction to Operating Systems

Sockets: Course Notes For Reference

Socket Abstraction

In Unix, the open function creates a �le descriptor (integer value) that can be used

to access the �le. Like �les, each socket is identi�ed by a integer called its socket de-

scriptor. Unix allocates socket descriptors in the same descriptor table as �le descriptors.

Reading / writing to a socket can be done the same way they are done with �les.

Once a socket is created, it can be used to wait for an incoming connection (server

operation) or to initiate a connection (client operation).

A socket is an end point for communication. The end point is identi�ed by the machine's

IP address and the protocol port number. Before the sockets are used for communication,

information such as end point address, protocol type, etc. should be provided. (these pa-

rameters are discussed under system calls)

Figure 1 illustrates how the socket system calls are used in a client-server communication

session.

1

?

-�

? �������������9

?

XXXXXXXXXXXXXz

?

?

?

?

?

?

socket ()

listen ()

bind ()

accept ()

socket ()

connect ()

blocks until connetion

from client

connection establishment

write ()

read ()

write ()

read ()

data (request)

data (reply)

SERVER CLIENT

Figure 1. Socket system calls in a connection oriented client-server

communication session

2

Elementary Socket System Calls

Described below are some of the elementary system calls required to perform network

programming using sockets.

The socket System Call

Usage

int socket(int FAMILY, int TYPE, int PROTOCOL);

For TCP/IP, PF INET FAMILY is used as the protocol family; type of service can be

stream or datagram, denoted by SOCK STREAM and SOCK DGRAM respectively. For

a socket that uses the Internet protocol family, the protocol or type of service argument

determines whether the socket will use TCP or UDP.

The bind System Call

The bind system call assigns a name to an unnamed socket.

Usage

int bind(int SOCKFD, struct sockaddr *MYADDR, int ADDRLEN);

The second argument is a pointer to a protocol-speci�c address and the third argument

is the size of the address structure.

Using bind:

� Servers register their well-known address with the system. It tells the system \this is

my address and any messages received for this address are to be given to me." Servers

need to do this before accepting client requests.

� A client can register a speci�c address for itself.

The connect System Call

A client process connects a socket descriptor by using the connect system call to establish

a connection with a server.

Usage

int connect(int SOCKFD, struct sockaddr *SERVADDR, int ADDRLEN);

The second and third arguments are a pointer to a socket address and its size as de-

scribed earlier.

The listen System Call

This system call is used by a connection-oriented server to indicate that it is willing to

receive connections.

3

Usage

int listen(int SOCKFD, int BACKLOG);

The listen system call is usually executed after both the socket and bind system calls

are executed, and immediately before the accept system call is executed. The BACKLOG

argument speci�es how many connection requests can be queued by the system while it

waits for the server to execute the accept system call.

The accept System Call

After a connection-oriented server executes the listen system call, an actual connection

from a client process is waited for by having the server execute the accept system call.

Usage

int accept(int SOCKFD, struct sockaddr, *PEER, int *ADDRLEN);

The accept system call takes the �rst connection request on the queue and creates

another socket with the same properties as SOCKFD. If there are no connection requests

pending, this call blocks the caller until one arrives.

The PEER and ADDRLEN arguments are used to return the address of the connected

peer process (the client).

The close System Call

The close system call is used to close a socket.

Usage

int close(int SOCKFD);

System Data Structures

The socket software provides corresponding structure declarations. Each TCP/IP end-

point address consists of a 2-byte �eld that identi�es the address type, a 2-byte port number

�eld, a 4-byte IP address �eld, and an 8-byte �eld that remains unused. Prede�ned structure

sockaddr in speci�es the format.

struct sockaddr_in { /* struct to hold an address */

u_short sin_family; /* type of address */

u_short sin_port; /* protocol port number */

struct in_addr sin_addr; /* 32 bit netid/hostid */

/* network byte ordered */

char sin_zero[8]; /* unused */

};

struct in_addr {

u_long s_addr; /* 32 bit netid/hostid */

};

4

Looking Up A Domain Name

A client must specify the address of a server using structure sockaddr in. Doing this

requires converting an address in dotted decimal notation or a domain name in text form

into a 32 bit IP address represented in binary. The inet addr and gethostbyname library

routines perform this conversion. The former takes an ASCII string that contains a dotted

decimal address and returns an IP address in binary. The latter takes an ASCII string that

contains the domain name for a machine and returns the address of a hostent structure

that contains, among other things, the host's IP address in binary. The hostent structure

is de�ned below.

struct hostent {

char *h_name; /* official host name */

char **h_aliases /* other aliases */

int h_addrtype; /* host address type */

int h_length; /* length of address */

char **h_addr_list; /* list of addresses from name server */

/* a NULL terminates the list */

};

#define h_addr h_addr_list[0] /* first address in list */

For Internet addresses, the array of pointers h_addr_list[0], h_addr_list[1], and so

on, are not pointers to characters, but are pointers to structures of type in_addr de�ned

above.

Network Byte Order

TCP/IP speci�es a standard representation for binary integers used in protocol head-

ers. The representation, known as network byte order, represents integers with the most

signi�cant byte �rst (big endian). Sending machines are required to translate from the

local integer representation to network byte order, and receiving machines are required to

translate from network byte order to the local machine representation.

The following four functions handle the potential byte order di�erences between di�erent

computer architectures.

Usage

u_long htonl(u_long hostlong);

u_short htons(u_short hostshort);

u_long ntohl(u_long netlong);

u_short ntohs(u_short netshort);

� htonl : converts host to network, long integer.

� htons : converts host to network, short integer.

� ntohl : converts network to host, long integer.

� ntohl : converts network to host, short integer.

5

The example below shows a client program and a server program.

NOTE: The error handling is omitted from the code in order to make the program easier to

understand. Students, however are advised to include the error handling in their programs.

NOTE: The library procedure bzero is used to place bytes containing zeros in a block of

memory. It is a fast way to zero a large structure of array.

For more information read man pages.

/*

* desc : example client program.

*/

#define PORTNO 3456

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

static int str2IpAddr(char *anIpName){

/* input : hostname in ip format such as wigner.tisl.ukans.edu

* returns : 0 if any error ipaddr otherwise

* output : -

* desc : resolves an ip name.

*/

struct hostent *hostEntry;

struct in_addr *scratch;

if ((hostEntry = gethostbyname (anIpName)) == (struct hostent*) NULL)

return 0;

scratch = (struct in_addr *) hostEntry->h_addr;

return (ntohl(scratch->s_addr));

}

6

int main (int argc, char *argv[]){

struct sockaddr_in peerAddress, ownAddress;

int sessionSocket;

char data[256] ="";

char hostname[32];

bzero((char *)&peerAddress, sizeof(peerAddress));

bzero((char *)&ownAddress, sizeof(ownAddress));

sessionSocket = socket (AF_INET, SOCK_STREAM, 0);

gethostname (hostname, 32);

ownAddress.sin_port = htons(0);

ownAddress.sin_family = AF_INET;

ownAddress.sin_addr.s_addr = htonl(str2IpAddr (hostname));

bind (sessionSocket, (struct sockaddr *)&ownAddress, sizeof(ownAddress));

peerAddress.sin_addr.s_addr = htonl (str2IpAddr(argv[1]));

peerAddress.sin_port = htons (PORTNO);

peerAddress.sin_family = AF_INET;

connect (sessionSocket, (struct sockaddr *)&peerAddress, sizeof (peerAddress));

read (sessionSocket, data, 256);

printf ("%s\n",data);

close (sessionSocket);

return 0;

}

/*

* desc : example server program

*/

#define PORTNO 3456

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <netdb.h>

7

static int str2IpAddr(char *anIpName){

/* input : hostname in ip format such as wigner.tisl.ukans.edu

* returns : 0 if any error ipaddr otherwise

* output : -

* desc : resolves an ip name.

*/

struct hostent *hostEntry;

struct in_addr *scratch;

if ((hostEntry = gethostbyname (anIpName)) == (struct hostent*) NULL)

return 0;

scratch = (struct in_addr *) hostEntry->h_addr;

return (ntohl(scratch->s_addr));

}

int main (int argc, char *argv[]){

struct sockaddr_in ownAddress, peerAddress;

int serverSocket, sessionSocket, size;

char data[256] = "Hi, This is server speaking...\n";

char hostname[32];

bzero((char *)&peerAddress, sizeof(peerAddress));

bzero((char *)&ownAddress, sizeof(ownAddress));

serverSocket = socket (AF_INET, SOCK_STREAM, 0);

gethostname (hostname, 32);

ownAddress.sin_port = htons(PORTNO);

ownAddress.sin_family = AF_INET;

ownAddress.sin_addr.s_addr = htonl(str2IpAddr (hostname));

bind (serverSocket, (struct sockaddr *)&ownAddress, sizeof(ownAddress));

sessionSocket = accept (serverSocket, (struct sockaddr *)&peerAddress, &size);

close (serverSocket);

write (sessionSocket, data, 256);

close (sessionSocket);

return 0;

}

8

Reference

Stevens, W. Richard, 1990, UNIX NETWORK PROGRAMMING, Prentice Hall, Engle-

wood Cli�s, N.J., 1990.

Comer, Douglas and Stevens, David, 1996, INTERNETWORKING WITH TCP/IP - Volume 3,

Prentice Hall, Upper Saddle River, N.J., 1996.

DN/CL 678ipc.TEX January 26, 1998

9

