
Page 1
CSCE 455/855
Steve Goddard Lecture 10

1

CSCE 455/855
Distributed Operating Systems

CORBA

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE855

Page 2
C

SC
E

 455/855
S

teve G
oddard

L
ecture 10

2

◆
C

om
m

on O
bject R

equest B
roker A

rchitecture
»

specification for object-request architectures
❖

I.e. m
atch object requests w

ith im
plem

entations

❖
distributed object platform

/fram
ew

ork

»
C

O
R

B
A

 is n
o

t a
 w

orking
 prod

u
ct

❖
it is a specification

C
O

R
B

A

Page 3
CSCE 455/855
Steve Goddard Lecture 10

3

◆ Object Management Group
» consortium that created CORBA and related

technologies
❖ Sun, HP, Oracle etc. (700+ members)

❖ Microsoft is not a member of the consortium

◆ why?

» OMG creates the specs…
❖ that can then be turned into products by various vendors

❖ if vendors stick to specs,

❖ should be able to run with any CORBA implementation

CORBA

Page 4
CSCE 455/855
Steve Goddard Lecture 10

4

◆ Define a way to divide application logic among
objects distributed over a network
» using standards

❖ allow any operating system, machine, language

❖ ...to be involved on creating a component

» as long as the standard is complied with
❖ objects should be able to work together

» the death of language religious wars!!

◆ Achieved through a distributed object architecture
» I.e. object-oriented + distributed heterogeneous objects

The CORBA Vision

Page 5
CSCE 455/855
Steve Goddard Lecture 10

5

◆ Separation of interface and implementation
» create a well-defined interface to an object

❖ parameters passed to the object

❖ data returned

❖ define the form (type, structure) of parameters and return
values

» given a well-defined interface, implementation doesn’t
matter

❖ can change the implementation without impacting rest of the
application (o-o concept)

❖ doesn’t have to be programmed in the same language

❖ …or reside on the same machine

The CORBA Vision (cont.)

Page 6
CSCE 455/855
Steve Goddard Lecture 10

6

◆ OMA Components
» CORBA

❖ connects objects, not applications

» CORBAservices
❖ low-level functionality needed by objects, such as security,

time, persistence, transaction, and naming services.

» CORBAfacilities
❖ user-level facilities, such as document management, help

facilities, and system administration, provided to applications .

Object Management
Architecture (O M A)

Page 7
CSCE 455/855
Steve Goddard Lecture 10

7

◆ Object Request Broker (ORB)

◆ OMG Interface Definition Language (IDL)

◆ Language Mappings

◆ Interface Repository (IR)

◆ Dynamic Invocation Interface (DII)

◆ Object Adapters (OA)

◆ Inter-ORB Protocols (e.g. IIOP)

CORBA Components

Page 8
CSCE 455/855
Steve Goddard Lecture 10

8

◆ Object Request Broker (ORB)
» middleware that establishes client-server relationship

between objects

» links object requests to implementations

◆ Using an ORB
» client requests a service

» ORB intercepts the call and finds an object that can
implement the request

❖ do necessary translation in passing parameters, getting results

» client acts as though its calling a method in the system
❖ client doesn’t have to know details

Object Request Broker

Page 9
CSCE 455/855
Steve Goddard Lecture 10

9

◆ ORB location services
» ORB is free to choose an implementation

» if a host is down, choose another object
❖ …that satisfies the request

◆ Requires that objects are written with certain
requirements
» global naming scheme (object reference)

» registration of services
❖ each object tells what services it provides

ORB (cont.)

Page 10
CSCE 455/855
Steve Goddard Lecture 10

10

◆ IDL is a language used to define interfaces
» objects must then implement the interface faithfully

» clients only see the IDL interface definition

◆ IDL is a declarative language
» meaning it only allows declarative statements

» no conditionals, loops, etc.

» supports most basic types (short, long, float, etc)
❖ also some derived types (string, structures, arrays, etc.)

Interface Definition
Language (ID L)

Page 11
CSCE 455/855
Steve Goddard Lecture 10

11

◆ Most important - creates an interface
» interface defined as a collection of specifications that

define an API set

» interfaces contained in a module
❖ modules define a local name space

❖ therefore global name space is only concerned with module names

❖ somewhat like packages in Java

» operation is the specification of a method call
❖ signature (operation name, return type, parameter list)

» exceptions can be raised (raises)
❖ handled by client code

» can also declare a context for an operation
❖ name-value pairs similar to UNIX or DOS environment variables

IDL (cont.)

Page 12
CSCE 455/855
Steve Goddard Lecture 10

12

module <module name> {
 <user-defined type declarations>;
 <constant declarations>;
 <exception declarations>;

 interface <interface-name> [:parent-interface-name] {
 <user-defined type declarations>;
 <constant declarations>;
 <exception declarations>;
 <attribute declarations>;

 [operation-type] <operation-name> (<parameter list>)
 [raises exception_name, …] [context (context1, …)];

 [operation-type] <operation-name> (<parameter list>)
 [raises exception_name, …] [context (context1, …)];
 }

 interface <interface-name> [:parent-interface-name]
 …
}

IDL Example

Page 13
CSCE 455/855
Steve Goddard Lecture 10

13

◆ Map IDL to language features
» for example in C++

❖ IDL Module → C++ namespaces

❖ IDL interface → C++ class

❖ IDL char → C++ char

❖ IDL octet → C++ unsigned char

◆ OMG defines standard language mappings
» C, C++, Smalltalk, Ada, COBOL, Java

» other independent mappings (e.g. Perl, Eiffel, Modula-3)

◆ Mappings are embedded in IDL compilers
» each language has a specific IDL compiler

Language Mappings

Page 14
CSCE 455/855
Steve Goddard Lecture 10

14

◆ IDL compilers create stubs
» referred to as stubs on the client side

» skeletons on the server side

» clients interface with stubs
❖ to communicate with ORB

» orbs interface with skeleton
❖ to communicate with server

◆ Known as “static Method Invocation”
» stubs and skeletons directly linked into code

IDL Compilers

Page 15
CSCE 455/855
Steve Goddard Lecture 10

15

◆ IDLs define stubs similar to RMI/RPC
» stubs marshal parameters to/from the ORB

Object
ImplementationClient

IDL
Stub

IDL
Skeleton

Object Request Broker (ORB)

Request

IDL Interface to ORBs

Page 16
CSCE 455/855
Steve Goddard Lecture 10

16

◆ Multiple ways to interface with ORBS
» static IDL stubs

❖ as in previous slides

» dynamic invocation

Interfacing to an ORB

Page 17
CSCE 455/855
Steve Goddard Lecture 10

17

◆ Dynamic invocation
» Dynamic Invocation Interface (DII)

» Interface Repository (IR) stores
❖ interfaces

❖ references

❖ objects’ inheritance hierarchy and all operations it supports

» ORB matches dynamic request to a DSI
❖ protocol for client to get object reference, interface

◆ Dynamic Skeleton Interface (DSI)
» equivalent of DII for server-side

» ORB access servers without static skeletons

Interfacing to an ORB

Page 18
CSCE 455/855
Steve Goddard Lecture 10

18

◆ Allows clients to programmatically discover type
information at run-time
» primary utility is supporting dynamic method

invocations

◆ IR stores object
» interface definitions

» inheritance hierarchy (graph)

» all operations supported

◆ Services of IR can be accessed through
» Standard IR IDL interface

» Custom libraries provided by ORB vendor

Interface Repository (IR)

Page 19
CSCE 455/855
Steve Goddard Lecture 10

19

◆ Responsible for object activation transparency
» intermediate layer that connects the ORB and the object

implementation

» different OA for each supported programming language

◆ Main duties
» object registration

» generation of object references

» object activation

» activation of server process

» request handling

Object Adapters (OA)

Page 20
CSCE 455/855
Steve Goddard Lecture 10

20

◆ Direct ORB-to-ORB communication
» ORBs are in same domain (common IDL type systems)

» General Inter-ORB Protocol (GIOP)
❖ Internet Inter-ORB Protocol (IIOP)

◆ Bridge-based communication
» ORBs from different domains

» Environment-Specific Inter-ORB Protocols (ESIOPs)
❖ Distributed Computing Environment Common Inter-ORB

Protocol (DCE CIOP)

◆ allows for easy integration of CORBA and DCE
applications

ORB-to-ORB Communication
Inter-ORB Protocols

Page 21
CSCE 455/855
Steve Goddard Lecture 10

21

◆ Both have similar goals
» creating software objects that can run “anywhere”
» CORBA also adds a strong distributed theme

◆ Achieved in different ways
» Java: architecture neutrality

❖ JRE allows code to run on any system (with a JRE)

❖ model is a single monolithic application

» CORBA: transparent communication
❖ invocation of objects is transparent

❖ model is a set of (potentially distributed) objects working
together to create an object

❖ platform dependency is allowed, but communication
transparency hides dependencies

Java vs. CORBA

Page 22
CSCE 455/855
Steve Goddard Lecture 10

22

◆ Language Dependencies
» Java: one language

» CORBA: bridge differences in languages
❖ can run into ORB dependence (commercial ORBs have

differences)

◆ Distributed Services
» Java: no explicit support for distributed objects

❖ although RMI is a start

» CORBA: model is based on distributed objects

◆ Scale of systems
» Java: works for large or small apps

» CORBA: too much infrastructure for small apps

Java vs. CORBA (cont.)

