
Page 1
CSCE 455/855
Steve Goddard

1

CSCE 455/855
Distributed Operating Systems

Distributed File Systems

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE855

Page 2
CSCE 455/855
Steve Goddard

2

Overview
◆ File system is a key component of any distributed system

» Sometimes it is only used locally

» Many computations are most conveniently described
when using files as shared resources available to all
components of the distributed computation

» Distributed file systems are among the most well
developed distributed system components because
they are popular for support of pools of workstations

◆ File Service

» Specification of what the file system offers its clients

◆ File Server

» Process implementing the file service on a machine

Page 3
CSCE 455/855
Steve Goddard

3

Distributed File System
Design

◆ Ideally a distributed file system should be transparent

» Computations and humans using it should not be able to
tell that it is distributed

» This depends on transparency of several components

◆ Two major components

» File Service Interface
❖ Operations on an individual file

» Directory Service Interface
❖ Operations on groups of files

❖ Name Space issues

Page 4
CSCE 455/855
Steve Goddard

4

File Service Interface
◆ File service interface answers fundamental questions

» What is a file?

» What can I do with and to a file?

◆ Files can vary in structure

» Sequences of records

» Complex record structures

» Sequence of bytes

◆ Sequence of bytes is most general, since the others can be
implemented on top of it quite easily

» UNIX and Microsoft are also the most common
distributed file systems and they both use this model

» Possible performance hit

Page 5
CSCE 455/855
Steve Goddard

5

File Service Interface
◆ Attributes

» Information associated with, but not part of, a file
❖ Owner, size, creation time, access permissions

◆ Mutable/Immutable

» Can a file be modified after creation?

» We are used to this, but it makes distribution harder

» Immutable files only support CREATE and READ

» Simplifies caching and replication because it eliminates
all consistency considerations

◆ Capabilities: one method of access control

» Objects explicitly granting access to holder

» May be passed from user to user

Page 6
CSCE 455/855
Steve Goddard

6

File Service Interface

◆ Access Control Lists

» Information associated with the file rather than the user

» Explicitly lists what users may access the file and what
type of access is permitted to each

❖ UNIX scheme

◆ Access Models

» Upload/Download

» Remote Access

» Trade simplicity against network traffic and latency

» Figure 5-1, page 247 Tanenbaum

Page 7
CSCE 455/855
Steve Goddard

7

File Service Interface
Upload/Download

◆ Transfer file to client on OPEN or
first READ

◆ Transfer back to server on
CLOSE (last WRITE)

◆ R/W operations local on the client

◆ Conceptually simple

◆ Requires lots of client storage

◆ Large latencies associated with
moving whole files

◆ Traffic could increase or decrease

» Depends on volume of R/W
vs. file size

2

1

Client

Server

21

Open Close

R/W

Page 8
CSCE 455/855
Steve Goddard

8

File Service Interface
Remote Access

◆ Support file operations remotely
(Open/Close, R/W, etc)

◆ File remains on server

◆ Lowers startup latency but every
operation goes across the network

» Network traffic could be larger
or smaller than upload/download
depending on volume of file
operations vs. file size

◆ Requires less space on the client

Client

Server

21

Open

Close
R/W

Page 9
CSCE 455/855
Steve Goddard

9

Directory Service Interface
◆ Supports the file system structure

» Could be anything but virtually all systems use a
hierarchical structure

❖ Directed acyclic graph

❖ Parent /Child relations and associated links

◆ Distribution (as usual) has all the usual problems, makes
some of the normal ones worse, and has some new ones
too

» Unique resolution of element in the name space to a file

» Composition of physical file systems (mount)

» Transparency - can users tell parts of FS are distributed

» Uniformity - is the name space the same on all
machines

Page 10
CSCE 455/855
Steve Goddard

10

Directory Service Interface
◆ Key Issues:

» Can all machines have the same view of the FS?

» Should all machines have the same view of the FS?

» Performance considerations may make a common view
undesirable even if it is possible

◆ Standard Implementation Strategy:

» Optimize most common case(s)

◆ Limit overhead by not distributing full FS view to all users

» Decreases distribution work while increasing
management overhead required to decide who sees
what

◆ Increase labor for less common operations (delete vs. read)
by having the deleting system initiate analysis

Page 11
CSCE 455/855
Steve Goddard

11

Directory Service Interface
Name Resolution

◆ Name space can be arbitrary

» Hierarchy with names and slashes (forward or back) is
the most common and seems to be the best

❖ Uniformity of notation for all objects in FS

❖ Maximum parsimony (succinct expression)

◆ Users and programs operate in the name space

» Path Name (name space element)

◆ Operating system uses its own internal designation

» Data structure reference (I-Node)

◆ Path Name to I-Node translation

» Provides access to all elements of the name space

Page 12
CSCE 455/855
Steve Goddard

12

Directory Service Interface
Name Resolution

◆ Universal use of the name space to represent all elements

» Requires Path→ I-Node translation to be smart about
all types of objects

» Requires use of I-Node to represent all types of objects
❖ Actual method used

◆ Name space object types

» File: most common elements

» Directory: also common elements

» Device Special File: access to device drivers

» Mount points: identifies physical file system borders

» Symbolic Links: useful and comparatively recent

Page 13
CSCE 455/855
Steve Goddard

13

Directory Service Interface
File System Composition

◆ Name space is virtual but the FS contents are physical

» Must deal with multiple physical components

◆ Composition of multiple physical elements advantageous

» Graceful FS Scaling
❖ Add arbitrary number of partitions to name space

» Location Transparency
❖ Failure or replacement of physical partitions concealed

» Graceful Distribution
❖ Distributed components distinguished within file system

❖ Distributed element is just another physical partition

◆ Composition Operation: mount a partition on a directory

Page 14
CSCE 455/855
Steve Goddard

14

Directory Service Interface
File System Composition

◆ Partition P1 is the root partition and
provides the root (/) for FS

◆ Partitions P2 and P3 are separate
physical partitions mounted on
directories in P1

» A and B are P1 directories

» Covered by mount operation
❖ mount /dev/P2 /A

◆ Each partition is a separate FS

» Separate I-Node pool

◆ Path→ I-Node: /A/C

» P1:/A marked as mount point
redirects translation to P2:/

DC

/

A

/

B

P1

P2 P3

FE

/

Page 15
CSCE 455/855
Steve Goddard

15

Directory Service Interface
File System Composition

◆ Consider partition Ids that include the
machine identifier → M1:P1

◆ Path→ I-Node: /A/C

» P1:/A marked as mount point
redirects translation to M2:P2:/

◆ Advantage here is that knowledge of
distribution is limited to specific parts
of the system

» Path→ I-Node

» I-Node operations

◆ I-Node ID must now include the
machine: M1:I-Node

» Local Mx → local operation

» Remote Mx → remote operation

DC

/

A

/

B

M1:P1

M2:P2 M3:P3

FE

/

Page 16
CSCE 455/855
Steve Goddard

16

Directory Service Interface
File System Composition

◆ Composition (mounting) is also used to create a generic
interface to a variety of file systems

» FTP based remote access

» WWW (HTTP) file systems

» Encrypted and compressed file systems

◆ Generalization of “file system” concept

» Generic file system support in many OS’s

» File system switch in Linux and others

◆ I-Node includes information on FS type

» Distribution easily supported as a file system type (NFS)

» File system data structure contains machine ID
❖ I-Node structure need not change

Page 17
CSCE 455/855
Steve Goddard

17

Directory Service Interface
Transparency

◆ Location Transparency

» Path name gives no hint where the file is located

» Moving files physically can require many changes
❖ Symbolic Links

◆ Location Independence

» Files can be moved without the path names changing

◆ /net/server/root is not location transparent but is location
independent if server remains constant over moves

◆ Many (most?) installations using NFS still tend toward
path names including a server (machine) component

» Many that are more transparent use symbolic links
whose mappings change when things move

Page 18
CSCE 455/855
Steve Goddard

18

Directory Service Interface
Uniformity

◆ Can the file system name space look the same at every
machine?

◆ Should the file system name space look the same at every
machine?

◆ Uniformity implies that every machine have access to every
file

◆ Transitive property of sharing

» Any two hosts sharing a file A implies that all hosts can
see A

» Else the name space for the hosts sharing A is different
from those not sharing A

◆ Clearly every system sharing some files is not willing to share
every file

Page 19
CSCE 455/855
Steve Goddard

19

Directory Service Interface
Uniformity

◆ Complete uniformity is thus an attractive (maybe)
theoretical idea that is nonsense in practice

◆ Uniformity of subsets of the name space is useful

» Shared software

» Shared data

◆ Large portions of many (most) systems will be common
and should have the same structure for ease of
management

» /usr/local on Unix machines

◆ Common structure will commonly allow for a private area

» /users/foo or /projects/bar

◆ Non-uniform, non-universal portions are still common
shared among a subset of users

Page 20
CSCE 455/855
Steve Goddard

20

Directory Service Interface
Uniformity

◆ Standard challenges related to maintaining a consistent
global view of a shared/distributed data set

» How to support the semantics of operations(which
generally give an unshared view of the data and
operations) on elements of the shared data set

◆ System must support a notion of elements that are
composed to form the name space for any given machine

» File systems (partitions) are generally the elements

» mount is the operator for composition

◆ Hosts supporting a partition export it, making it available
for sharing

» Sometimes globally, sometimes to a specific set of
machines

Page 21
CSCE 455/855
Steve Goddard

21

Directory Service Interface
Name Space Structure

◆ Both users and administrators must be well served

» Sometimes conflicting goals: simplicity vs.
transparence

◆ Three common approaches

» Machine + Path: /machine/path

» Mounting remote file systems onto the local file system

» Transparent symbolic links to non-transparent names

◆ /usr/local on many networked UNIX machines is a
symbolic link to /net/server/d4/rtools/...

» This provides a (thin) layer of information hiding

» Single name space appears the same on all machines

Page 22
CSCE 455/855
Steve Goddard

22

Directory Service Interface
Name Space Structure

◆ Requirements and methods are still evolving

» What is desirable and especially what is cost effective
are still open issues

◆ Common software and public information commonly
shared

◆ Security and privacy of other modes of use is not as clear

» Trusting work groups is the most common mode

Page 23
CSCE 455/855
Steve Goddard

23

Semantics of File Sharing
◆ When two or more processes share the same file

◆ Semantics of reading and writing by each party must be
defined precisely

» Primarily this relates to when changes made by each
party are

❖ Reflected in the file

❖ When they become visible to the other party

◆ Several possible approaches

» UNIX semantics

» Session Semantics

» Immutable Files

» Atomic Transactions

Page 24
CSCE 455/855
Steve Goddard

24

Unix Semantics

◆ Every operation on a file is instantly visible to all parties

◆ A Read following a Write will return the value just written

» For all users of the file

◆ Enforces (requires) a total global order on all file
operations to return most recent value

» On a single physical machine this results from using a
shared I-Node to control all file operations

» File data is thus shared data structure among all users

» Distributed file server must reproduce this behavior
❖ Performance implications of “instant updates”

❖ Fine grain operations increase overhead

Page 25
CSCE 455/855
Steve Goddard

25

Unix Semantics

◆ Distributed UNIX Semantics

» Could use a single centralized server which would thus
serialize all file operations

❖ Provides poor performance under many use patterns

◆ Performance constraints require that the clients cache file
blocks, but the system must manage consistency among
cached blocks to produce UNIX semantics

» Writes invalidate cached blocks

» Read operations on local copies “after” the write
according to a global clock happened “before” the write

❖ Serializable operations in transaction systems

❖ Global virtual clock orders on all writes, not reads

Page 26
CSCE 455/855
Steve Goddard

26

Session Semantics

◆ UNIX semantics are still expensive

» Write invalidation of all cached blocks slows write
operations and reduces read performance

» Relaxation of the file interaction semantics helps

» Make changes to local copies and propagate them when
the file is closed

◆ Session semantics because the changes become visible
when the session is finished

◆ Final file state depends on who closes last

» OK for processes whose file modification is transaction
oriented, open-modify-close

» Very Bad for mode of open for a series of operations

Page 27
CSCE 455/855
Steve Goddard

27

Session Semantics
◆ Semantics could arbitrarily chose update order

» No real guidelines or obvious reason to formulate a rule

» Modification of file by a process is monolithic

◆ Violates the familiar UNIX semantics implied by a single
file pointer shared among parents and children

» Two processes appending to a file should produce
cumulative results interleaved by write operation order

» Session semantics would produce one process’s
changes or the other, not both

❖ Many processes keep files open for long periods

◆ Usable with caution but differs from many programmers’
previous experience, so must be approach with caution

Page 28
CSCE 455/855
Steve Goddard

28

Immutable Files

◆ No updates are possible

» Simplifies sharing and replication

◆ No way to open a file for writing or appending

◆ Only directory entries may be modified

◆ Create a new file to replace an old one

◆ Also fine for many applications

» Again, though, different enough that it must be
approached with caution

◆ Design Principle:

» Many applications of distribution involve porting
existing non-distributed code along with its
assumptions

Page 29
CSCE 455/855
Steve Goddard

29

Atomic Transactions

◆ Changes are all or nothing

» Begin-Transaction

» End-Transaction

◆ System responsible for enforcing serialization

» Ensuring that concurrent transactions produce results
consistent with some serial execution

» Transaction systems commonly track the read/write
component operations

◆ Familiar aid of atomicity provided by transaction model to
implementers of distributed systems

» Commit ad rollback both very useful in simplifying
implementation

Page 30
CSCE 455/855
Steve Goddard

30

Distributed File System
Implementation

◆ General Design Principle:

» Design the system to handle how it is actually used well

» RISC argument after years and years of CISC

◆ File Use

» Results of studying actual file use can be surprising

» File use also changes with changing applications
❖ Audio, Video, Graphics increase frequency of large files

◆ Most files are under 10 KB

» Could mean full file transfer fine for most situations

» May be changing with changing applications
❖ Perhaps a multi-modal distribution

Page 31
CSCE 455/855
Steve Goddard

31

Distributed File System
Implementation

◆ Most files have a short lifetime

» Create, read, delete
❖ Temporary files for compilers and other programs

❖ Could easily be local to a client

◆ Few files are shared (concurrent access)

» Client caching is fine for single user

» Session semantics are fine
❖ Impose an overhead in unusual (concurrent access) case

❖ Possible conversion of semantics when concurrent access is
initiated

Page 32
CSCE 455/855
Steve Goddard

32

Distributed File System
Implementation

◆ There are distinct classes of files

» Different lifetimes, uses, and preferable semantics

◆ Executable Files

» Needed everywhere, but rarely change

» Wide replication is fine
❖ Complicates occasional update, but so what?

◆ Compiler and other temporary files

» Short lifetimes and often short files

» Unshared

» Easily and optimally kept local to the client

Page 33
CSCE 455/855
Steve Goddard

33

Distributed File System
Implementation

◆ Mailboxes are frequently updated but rarely shared so
replication is unlikely to help performance

◆ Ordinary data files may well be shared and accessed
concurrently

» Many readers, single writer is common and best
handled differently from many concurrent writers

◆ Conclusion: There are many classes of files and many
types of access requiring a variety of types of support

◆ System software can support many of these and even
choose among them based on usage pattern and locations
of users and files

Page 34
CSCE 455/855
Steve Goddard

34

System Structure

◆ Several choices about how file servers and directory
servers can be structured

◆ Are Clients and Servers different?

» Many systems make no distinction and can be both
since they all run the same software

❖ NFS remote file client and server

» Client and Server could be just user programs
❖ Also making support of both easy

» OS software and even hardware may be different
❖ File Server machine configurations and even embedded

configurations (Network Appliances Boxes)

Page 35
CSCE 455/855
Steve Goddard

35

System Structure

◆ Directory Service and File Access Service

» Single server combines essentially separate functions
resulting in more complex software

» Separate servers results in more communication

◆ Separate Servers

» Path to Binary (machine:I-Node) translation by
directory service

» Binary name then used to gain access through file
server

» More flexible and simpler software with more obvious
structure

◆ Distribution can still give rise to complications

Page 36
CSCE 455/855
Steve Goddard

36

System Structure
Directory Services

◆ Consider a file system composed of multiple physically
distributed elements

» One directory server per physical component

◆ Path name to binary file reference can be complicated

» Consider translation of /a/b/c

» Fig 5-7, page 260 Tanenbaum

◆ Each server responds to client with translation of the
component that resides on its system

» More communication but ordinary RPC adequate

◆ Servers could forward requests that cross physical
boundaries

» Less communication but smarter server software

Page 37
CSCE 455/855
Steve Goddard

37

System Structure
Caching

◆ Cache path translations on client to speed operation

» Files frequently used

» Frequent prefixes (/usr/local/bin)

◆ Cache misses default to basic lookup behavior

◆ Cache hits give binary file references

» BUT the reference may be stale so the file server must
be able to reject such a reference and tell the client that
it should do a regular lookup

» This is MORE expensive (latency and messages) so
hints must be right most of the time

Page 38
CSCE 455/855
Steve Goddard

38

System Structure
State

◆ Should servers maintain state information about clients

» Advantages and disadvantages to both (of course)

◆ Stateless server advantages

» Inherently fault tolerant
❖ Client crash doesn’t really matter

» No OPEN/Close Messages

» No server data structures per call

» No open file limits

◆ Client requests are self-contained, increasing message length

» Every message must contain context

◆ File locking requires a special lock server

Page 39
CSCE 455/855
Steve Goddard

39

System Structure
State

◆ State aware server

» Must context information about every open file

» Data structure size and computation load

◆ Read/Write message are smaller

» Context ID rather than full file ID

◆ Client crashes leave an irrelevant context

» Classic problem: Distinguishing crashed and slow
client

» Timeout too long: wastes space

» Timeout too short: invalidates inactive sessions

◆ Session and sequence numbers help track situation

◆ Read ahead and file locking also advantages

Page 40
CSCE 455/855
Steve Goddard

40

Caching

◆ Caching stores frequently or recently used data to improve
performance, as usual

◆ Four potential places to store parts of a file

» Server Disk

» Server’s Main Memory

» Client Main Memory

» Client Disk (if available)

◆ As usual, again, which is best depends on what is
happening

» Best in different ways as well: performance, ease of
implementation, simplicity

Page 41
CSCE 455/855
Steve Goddard

41

Caching

◆ Server’s Disk

» Most straightforward

» Usually plentiful resource

» Accessible to all

» Poor performance and choice as information has
farthest and longest to travel

◆ Server’s Main Memory

» Keep recently use files in faster medium

» If server cache hits, server disk access avoided
❖ Network transfer still happens and likely dominant

» Less plentiful than disk

Page 42
CSCE 455/855
Steve Goddard

42

Caching
◆ What Unit should we manage?

» Whole Files

» Disk blocks
❖ Uses cache and disk space more efficiently

❖ Better suited to unit of access and use of the resource

◆ Cache content replacement

» Victim selection algorithm

» Any basic caching algorithm is probably fine
❖ Access is at a fairly coarse time scale

» LRU with linked lists probably feasible

◆ Evicted block written to disk if necessary or just
evaporates

Page 43
CSCE 455/855
Steve Goddard

43

Caching

◆ Server side Main Memory is totally transparent to client

» But still requires network transfer

» Network latency typically the same order of magnitude
as the disk

❖ Bigger or smaller depending on disks and network

◆ Moving to main memory reduced disk influence

» Client side caching eliminates network influence

◆ Client side Disk caching

» Eliminates Network, but reintroduces disk

» Often plentiful but introduces coherency problems

» Usually more plentiful than main memory

Page 44
CSCE 455/855
Steve Goddard

44

Caching

◆ Client side main memory

» Eliminates both sources of large latency

» Still has cache coherency problems since there are now
multiple copies of the disk block

» Most commonly used
❖ Best cost/benefit ratio

◆ Several options about where to cache the information

» Figure 5-10, page 264 Tanenbaum

» Client Process memory

» Kernel Memory

» Cache manager process memory

Page 45
CSCE 455/855
Steve Goddard

45

Caching
◆ Client process memory

» Cache managed by system call library

» File written back to server when client exits

» Extremely low overhead

» Only effective if clients frequently open and close files

◆ Kernel Memory

» Disadvantage: always requires a system call even on
hits

» Cache surviving across process exit more than
compensates

» Consider a two pass compiler one pass writes and the
other reads an intermediate file

Page 46
CSCE 455/855
Steve Goddard

46

Caching

◆ Separate User-Level Cache manger process

» Keeps kernel free of distributed file system code

» Easier to program and run experiments
❖ Isolated

❖ Well defined

» Cache pages could be paged out (user level VM)
❖ Defeats the purpose

❖ Could lock cache pages into main memory

Page 47
CSCE 455/855
Steve Goddard

47

Cache Consistency

◆ As usual you cannot get something for nothing

◆ If two clients access a file concurrently and both read,
there is not problem, but if both write we could handle it
by

» A third client seeing the original file, not the modified
version

❖ We could eliminate this problem by adopting session semantics

» This simply redefines incorrect behavior as correct

» If you or your program expects UNIX semantics this is
wrong

» Or, the last client to write the file back could have its
changes preserved - basically session semantics

Page 48
CSCE 455/855
Steve Goddard

48

Cache Consistency
Write Through Solution

◆ Does not affect (reduce) write traffic

» Simple and effective

◆ When a page is modified the new value is kept in the cache

» Also written through to the server

» Wasteful for successive writes with no intervening read

◆ A new process accessing the file sees the new values

» Still has problems

◆ Suppose A write a file and terminates

» A machine still has cached file

» B reads and modifies the file writing it back

» New process on A reading the file gets the old contents

Page 49
CSCE 455/855
Steve Goddard

49

Cache Consistency
Write Through Solution

◆ Could have a client check with the server before using cache
when a new process opens the file

» Epoch number associated with the file version

» Form of global event (version) ordering

◆ Requires an RPC, but transfers a small amount of data

» Validates a large amount of data (cache) for use

◆ Write-Through reduces on read traffic

» Write traffic is the same (write-through)

◆ Could cheat by only noting that the file has been modified and
then either demands changes when sharing begins or
periodically collects updates

◆ What does a second process see on open - depends on when

Page 50
CSCE 455/855
Steve Goddard

50

Cache Consistency
 Write on Close

◆ A next step is to match session semantics

» Write the file only after it has been closed

◆ Even better, wait for a timeout period after it has been
closed to see if it will be reopened or deleted before
sending it to serer

◆ Still allows a second process to overwrite the first
process’s modifications, but that is true of all session
semantics local or distributed

Page 51
CSCE 455/855
Steve Goddard

51

Cache Consistency
Centralized Control Algorithm

◆ UNIX semantics but not robust and scales poorly

» When a file is opened a message is sent to server

» Server tracks files open for reading and/or writing

» Multiple readers are permitted

» Single writer constraint enforced

» File close write the file back to the server

◆ Requests for an open file may be granted or denied

◆ Alternatively the server may send a message to clients

» Invalidating/flushing the cached copies and disabling
caching

❖ This allows multiple readers/writers

» Dynamic semantics

Page 52
CSCE 455/855
Steve Goddard

52

Cache Consistency
Centralized Control Algorithm

◆ Inelegant since it involves unsolicited message from the
server to the client

◆ Server still must check to see if a cached file is valid and
the requested access is permitted

Page 53
CSCE 455/855
Steve Goddard

53

Replication

◆ Additional service that a distributed file system can
provide

» Multiple copies on different disks and servers

◆ Advantages

» Increases reliability since failure of one copy does not
destroy the file

» Increases availability since one server being busy or
down does not deny access tot he file

» Increases performance since the system can spread file
server workload across multiple servers

◆ Disadvantages

» Increased overhead for storage and administration

Page 54
CSCE 455/855
Steve Goddard

54

Replication

◆ Key Issue: Transparency

» Full range of treatment

» Full user knowledge and management

» Complete system concealment and transparency to user

◆ Three major approaches

» User management

» Lazy replication

» Group communication support

» Figure 5-12, page 269 Tanenbaum

Page 55
CSCE 455/855
Steve Goddard

55

Replication
User Management

◆ Client program of distributed file service explicitly creates
and manages multiple copies

» Distributed file system sees each as an independent files

◆ Directory server might still support the notion of multiple
copies and be able to return multiple references

» Assumes that client code and directory service use the
same conventions and/or that the client informs the
directory server through its interface

◆ Attractive for implementing application specific fault
tolerance and management semantics

» Source code control

» Data bases

Page 56
CSCE 455/855
Steve Goddard

56

Replication
Lazy Replication

◆ Client creates a single copy by interacting with some server

» Server conceals replication semantics

» Separates replication and application semantics

◆ Server holding the original copy is the interface and must be
smart enough to retrieve other copies at need

» Limited use when original server fails

» Advantage of being transparent to user

» Server fault tolerance could be introduced through name
transparency

◆ Server layer also assume responsibility for coherence of the
multiple copies

◆ Delay in creating the copies is also a vulnerability

Page 57
CSCE 455/855
Steve Goddard

57

Replication
Group Communication

◆ Combines aspects of User and Lazy approaches

» Provides replication support at the client side since this
is where the group communication is initiated

» Transparency to user still substantial since the
multiplicity is concealed inside the WRITE calls

◆ Client retains ability to describe replication and thus fault
tolerance semantics by describing group communication

◆ Advantage:

» Group approach concurrent with user actions

» Lazy replication creates copies in the background, often
after user finishes creating a new copy of file

❖ Session semantics flavor

Page 58
CSCE 455/855
Steve Goddard

58

Replication
Design Issues

◆ Which approach is better

» It Depends
❖ OK, on what?

◆ Application level semantics have a large influence

» Replication supports issues whose importance and
cost/benefit tradeoff vary widely with application

» Fault tolerance

» Reliability

» Availability

◆ Transparency is difficult because of this wide variance in
application semantics and cost

Page 59
CSCE 455/855
Steve Goddard

59

Replication
Update Protocols

◆ How can existing replicated files be modified?

» Coherence requires atomic update semantics for copies

◆ Sequential update messages to servers holding each copy
cannot support coherence through atomic update

◆ Two major approaches

» Primary copy

» Voting

◆ Primary copy approach designates copy on one server as
primary making all others secondary

» Client updates only the primary

» Primary sends all updates to the secondary copies

» Reads can be done from any server

Page 60
CSCE 455/855
Steve Goddard

60

Replication
Update Protocols

◆ Primary server fault tolerance

» Write update messages to stable storage (log) before
updating the file

» Makes updates atomic and recoverable across server
crashes since any in progress can be restarted on reboot

◆ Single point of failure

» If the primary server is down → no updates

» Election algorithms might help
❖ Promote a secondary to primary

❖ Directory service must hold enough group information

◆ Voting approach addresses primary failure

Page 61
CSCE 455/855
Steve Goddard

61

Update Protocols
Voting

◆ Client must get permission from multiple servers before
reading or writing a file

» More robust since any server being down not fatal

◆ Update example:

» Client contacts a majority of servers to approve update
❖ Analogy to two-phase locking and transactions

» Agreement of a majority commits the update creating a
new version number of the file

❖ Dissenting servers will eventually discover the majority
decision and concur

◆ Reading: client determines current version by receiving the
same version number from a majority

Page 62
CSCE 455/855
Steve Goddard

62

Update Protocols
Voting

◆ Subtle(?) semantic point

» What if a reader determines the most recent version

» Then another client begins an update

» Can they be concurrent
❖ Yes if servers preserve all active versions and serialized

transaction semantics are acceptable

❖ Write will produce results consistent with having happened
“after” the read

◆ Gifford’s approach defines the idea of a quorum

» Separate number of servers for read Nr and write Nw

» Decisions are consistent when Nr + Nw > N

Page 63
CSCE 455/855
Steve Goddard

63

Update Protocols
Voting

◆ Interesting tradeoffs between read and write latency
addressed by various values of Nr and Nw

» Roughly equal requires each to contact N/2(+1) servers

» Nr=1 minimizes read latency by requiring that a client
only find and contact one sever with a copy of the file

❖ Requires Nw=N maximizing write latency

❖ Appropriate for many readers, single writer situations

◆ Voting with ghosts handles a problem when Nr is small

» Nw is large and when servers are down is may not be
possible to form a write quorum

» Ghosts represent down servers and can participate to
form a write quorum

Page 64
CSCE 455/855
Steve Goddard

64

Update Protocols
Voting

◆ Voting with ghosts works because Nr and Nw are chosen to
ensure that reading and writing are mutually exclusive

◆ Interesting tradeoffs between read and write latency
addressed by various values of Nr and Nw

» Roughly equal requires each to contact N/2(+1) servers

» Nr=1 minimizes read latency by requiring that a client
only find and contact one sever with a copy of the file

❖ Requires Nw=N maximizing write latency

❖ Appropriate for many readers, single writer situations

◆ Servers represented by ghosts must obtain the most recent
version when they come up

» Always true

Page 65
CSCE 455/855
Steve Goddard

65

Network File System

◆ Created by Sun Microsystems and probably the single
biggest distribution success story in computing so far

» BUT carries with it baggage of history

» Created for significantly different computing context

◆ Supports heterogeneous systems

» CPU

» Data format

» Networks

◆ NFS architecture allows any machine to be both a client
and a server

» Each machine exports directories offered for remote use

Page 66
CSCE 455/855
Steve Goddard

66

Network File System

◆ Entire directory sub-trees are exported

» NFS server offers the mount point for export
❖ Simplifies accounting and implementation because the systems

need track only a single directory for each exported file system

❖ Constrains name space structure and sharing semantics but this
seems easy enough to handle in practice

» Each system announces exports in /etc/exports

◆ Clients import directories by mounting them in the local
name space

» Crossing the mount point during name to I-Node
translation signals file system type and protocol change

Page 67
CSCE 455/855
Steve Goddard

67

Network File System

◆ Flexible and general mechanism with several good points

» Isolates distribution to a small part of the client system
❖ New file system and/or I-Node type noting distribution

» Even diskless workstations can do this, mounting their
root FS

» Creates substantial transparency of local/remote file
location and thus enables workstations to have the same
functional structure while occupying any point in a
range of local/remote file

❖ Local and remote file location affect only performance

❖ Graceful transition between local disk and diskless

Page 68
CSCE 455/855
Steve Goddard

68

Network File System
Protocols

◆ Standard protocols are required to enable support for
heterogeneous systems

» Experience has shown that open standards almost
always win against closed standards

❖ Eventually

❖ Small sample size

◆ A protocol is a set of requests a client can make and the
corresponding replies that a server should make

» Defines and limits interaction semantics

◆ NFS defines two client-server protocols

» Mounting

» Directory and file access

Page 69
CSCE 455/855
Steve Goddard

69

Network File System
Mount Protocol

◆ A client can send a request to mount a particular directory
path name to a server

» If the path name is a legal directory and has been
exported then the server returns a file handle

◆ The file handle contains several kinds of information

» File system type

» Disk

» I-Node number

» Security information

» Note: client already knows the server

◆ Remember: file handle is a magic cookie

Page 70
CSCE 455/855
Steve Goddard

70

Network File System
Mount Protocol

◆ Systems are often configured to automatically mount sets
of remote directories at boot time

» This can cause problems when remote servers are down
❖ Delay or hanging

» Wastes time, system, and network resources when the
directories are not actually required

❖ NFS mount tables are the superset of all information than can
be used

◆ Auto-mount created to address this problem

» Remote directories are mounted only when requested in
the course of a name to I-node translation

» Allows a set of remote directories to be associated with
the mount point

Page 71
CSCE 455/855
Steve Goddard

71

Network File System
Mount Protocol

◆ First of associated servers to reply is used

◆ Simple race between servers is also a simple load
balancing mechanism

» First to reply has the lowest latency (modulo skew in
request transmission times)

» System with the lowest latency is likely to be the least
loaded

❖ Assuming network delay does not dominate

❖ Lowest network latency is also desirable, but different

◆ NFS does not explicitly support replication so USER is
responsible to ensure that multiple mount points are
identical → good for read-only file systems

Page 72
CSCE 455/855
Steve Goddard

72

Network File System
Access Protocols

◆ Clients send massages to servers to access and manipulate

» Files

» Directories

◆ Most UNIX file and directory library and system calls are
supported

» Substantial transparency and distributed support for the
basic file system structure and semantics

» EXCEPT OPEN and CLOSE

◆ LOOKUP message finds information about a file,
including its handle, but does not maintain internal tables

» Why? What are the implications

Page 73
CSCE 455/855
Steve Goddard

73

Network File System
Access Protocols

◆ NFS is a stateless protocol

» Stateless servers are simpler and more robust

» Require that each message be self-contained
❖ Contain all information required to satisfy request

◆ Read requests contain

» File handle

» Offset

» Number of bytes

◆ Stateless server can crash and reboot (quickly) without
client even noticing

» No information is lost since none is maintained

Page 74
CSCE 455/855
Steve Goddard

74

Network File System
Access Protocols

◆ Design Principle:

» Design servers to be stateless if possible

» Design servers to have a stateless component if possible

◆ Stateless benefits are numerous but is in conflict with some
aspects of UNIX file semantics

» File locking is an aspect of file state

» Stateless NFS context requires and additional
mechanism to preserve the state

❖ Lock server

❖ Optimize common case

Page 75
CSCE 455/855
Steve Goddard

75

Network File System
Access Protocols

◆ Security

» Originally NFS used basic rwx bits for owner group and
world

» Access messages contained the user and group numbers
of the client

❖ Naïve and easily spoofed

❖ Write your own NFS client filling in and ID numbers you like

❖ NFS often specifically excludes super user access

» Public Key cryptography can be used (optionally) to
validate client and server on each request/reply

❖ Data not encrypted

Page 76
CSCE 455/855
Steve Goddard

76

Network File System
Implementation

◆ Sun’s NFS implementation has 3 layers

» System call

» Virtual File System

» Local or NFS file system component

» Figure 5-14, page 276 Tanenbaum

◆ System calls

» Handles calls associated with file model: open/close.
Read/write, seek/tell

» Parses call parameters and checks for errors

» Translates and prepares the invocation of a
corresponding part of the VFS

Page 77
CSCE 455/855
Steve Goddard

77

Network File System
Implementation

◆ Virtual File System

» Abstracts the basic file model while wrapping calls to a
specific file system

❖ Precursor to file system switches and myriad of file system
types in Unices and NT

◆ VFS maintains a table with one entry for each open file

» Analogous to the system file table and set of open I-
Nodes associated with the local file system

» The V-Node (virtual I-Node) represents each open file
and indicates if it is local or remote

❖ Holds enough information to access the item

Page 78
CSCE 455/855
Steve Goddard

78

Network File System
Implementation

◆ Example: mount, open, read/write, close sequence

◆ Mount:

» Specifies local directory mount point and remote
directory to mount upon it

» Asks remote server for a handle to the directory
❖ Returned if exists and exported

» Makes a mount system call passing handle to OS

» Kernel constructs a V-Node to refer to the remote
directory and asks the NFS client to create a R-Node to
hold the handle

❖ V-Nodes refer to I-Nodes (local) or R-Nodes (remote)

Page 79
CSCE 455/855
Steve Goddard

79

Network File System
Implementation

◆ Open:

» Path to I-Node translation is now path to V-Node

» Finds that the name crosses a remote mount point and
will thus find the reference to the mounted R-Node

» Asks NFS client to send path name suffix (after remote
mount point) to the server for translation to file handle

» Client stores the file handle in the R-Node and returns
R-Node reference to VFS layer

» User is given a file descriptor which is mapped to the
V-Node created

◆ Local data structures contain information required to do
file operations

Page 80
CSCE 455/855
Steve Goddard

80

Network File System
Implementation

◆ Read:

» Client-server operations use 8K messages
❖ Even when less is required

» VFS layer automatically issues read-ahead request
❖ Requests next 8K chunk when it receives a request for one

❖ Optimization of common sequential access case

❖ Promotes concurrent server execution

◆ Write:

» Locally buffered until 8K chunk is accumulated

» Interaction with user level file pointer buffering

◆ Close: sends all client data to server immediately

Page 81
CSCE 455/855
Steve Goddard

81

Network File System
Implementation

◆ Interesting Issues and Factoids

» Servers maintain a main memory disk block cache to
lower access latency

» Clients maintain two caches
❖ File attributes (I-Nodes)

❖ File data

» Caches require coherency control
❖ NFS uses 3 second data and 30 second directory timers

❖ Open operation on a local cached file issues a concurrent
server update time query

❖ 30 second timer flushes all modified blocks to server

Page 82
CSCE 455/855
Steve Goddard

82

Network File System
Implementation

◆ Caching causes the UNIX file semantics to be distorted

» File modifications may only be visible after 30 seconds

» Concurrent writes to a single remote file from different
machines do not have a well defined result

❖ Race condition

◆ Empirical Observation:

» Complete transparency is often expensive or impossible

» Translucence often useful for most applications

» You must know the difference

◆ NFS popular BUT not appropriate for naïve distribution of
multi-process applications depending on concurrent file
access semantics

Page 83
CSCE 455/855
Steve Goddard

83

Distributed File Systems
Lessons Learned

◆ Observations in 1990 by Satyanarayanan about distributed
system design

◆ Workstations have cycles to burn

» Best price/performance ratio

» Distributed and scalable resource (not server)

» Owned by person requesting remote service

◆ Cache whenever possible

» Even modest caches can save large amounts of system,
network and shared resources

» Be cautious about coherency implications
❖ Evaluate costs as well as benefits

Page 84
CSCE 455/855
Steve Goddard

84

Distributed File Systems
Lessons Learned

◆ Exploit usage patterns

» Optimize important special cases
❖ Frequent

❖ Easy

» Balance against complexity of too many methods for the
same basic operation

◆ Minimize system-wide knowledge and change

» Constrains concurrency

» Increases latency

» Increases management complexity

» Affects scaling

» Attraction of stateless servers and hierarchic designs

Page 85
CSCE 455/855
Steve Goddard

85

Distributed File Systems
Lessons Learned

◆ Trust the fewest possible entities

» Lowers risk

» Lowers verification overhead

» Affects scaling
❖ Avoid per-workstation dependency

◆ Batch work when possible

» 8K file block operations is an example

» Increases latency and coherency concerns

◆ Common Design Challenge

» Desirable goals are in competition and thus final design
must compromise among them

Page 86
CSCE 455/855
Steve Goddard

86

Trends in
Distributed File Systems

◆ Hardware

» Costs continue to drop at an amazing rate

◆ Rapidly dropping memory costs make it possible to have
every larger data bases in main memory

» Servers could have entire data set in main memory

◆ Still a cache, so coherence problems with stable storage
still exist

» Write-through policy

» Idle cycles used to write to disk

◆ RAM disk and file system

» IDE Flash-ROM 20 MB disks

Page 87
CSCE 455/855
Steve Goddard

87

Trends
Hardware

◆ Write-Once Read Many (WORM)

» CD-ROM burners

» Excellent backup and archiving method

» Jukeboxes add a level to memory hierarchy
❖ CD - Disk - Main Memory

» Increasingly cheap

» Still fairly slow

◆ Huge capacity networks

» 100 Mb/s and Gb/s radically change distribution and
caching tradeoffs

» U of Washington use of idle remote workstation
memory instead of disk as VM cache

Page 88
CSCE 455/855
Steve Goddard

88

Trends
Hardware

◆ Specialized hardware for sophisticated systems

» Real-time support

» Distributed synchronization and control

◆ FPGA synergy

» Consider modest FPGA assets in a workstation which
could be made to do many things

» Distributed locking and cache block invalidation

» Special administrative ATM virtual circuits with group
communication support

» Direct handling of administrative cells
❖ Concurrent with CPU

Page 89
CSCE 455/855
Steve Goddard

89

Trends
Scaling

◆ Distributed system size strongly affects algorithm choice

» Working well for 100 machines means nothing for 10K

◆ Centralized algorithms do not scale well

» Often distributed ones do not either
❖ Distributed mutual exclusion

» Partitioning and hierarchic organization often helps

◆ Broadcasts are a problem

» Consider CPU broadcasting one message per second

» N of these generate N interrupts at N machines
❖ Not a problem for N=10

❖ VERY problematic for N=10K

Page 90
CSCE 455/855
Steve Goddard

90

Trends
Scaling

◆ Data structures become important with scaling

» Linear search easiest and fastest for 10

» Self abuse for even 100

◆ Strict semantics are harder to implement as systems scale

» Design Principle: use weakest semantics that make
sense

» Trade off ease of programming with scalability

◆ Name space

» How long can/should path names get?

Page 91
CSCE 455/855
Steve Goddard

91

Trends
Wide Area Networking

◆ Virtually all distributed system research has been done in
the context of LANs

» Considerable changes with WAN context

» Latency

» Loss

» Cost

» Interaction

◆ WAN access of major economic importance

» WWW commerce

» Video on demand

» Distributed Virtual Environments

Page 92
CSCE 455/855
Steve Goddard

92

Trends
Wide Area Networking

◆ Commercialization will create many changes

» Service providers have no coherent pricing model

◆ Economies of scale

» IP phones

◆ Ubiquitous Mobile Environments

» Consistent interface

» Anywhere
❖ Home, Office, Airport Kiosks

» Any Platform
❖ Workstations to Palm Pilot

Page 93
CSCE 455/855
Steve Goddard

93

Trends
Mobility

◆ Network addressing is a big challenge - Mobile IP

» May be transparent to distributed computing level

◆ Often seen as highly variable communication bandwidth

» Isolated

» Wireless

» Wired

◆ Interesting effects on caching

» CODA file system claims to support mobility and
intermittent connection

» Coherency on steroids

◆ Constraints on application semantics

Page 94
CSCE 455/855
Steve Goddard

94

Trends
Mobility

◆ Rapidly Deployable Radio Network - RDRN

» Wireless end-user and network nodes

» Steerable communication beams

» Self-organizing network structure

◆ Management software is clearly distributed

◆ Interesting distributed system issues

» Election: DNS server

» Local connection choices have global consequences
❖ Iterative network topology adjustment?

» Shorter time scale on link state changes?

Page 95
CSCE 455/855
Steve Goddard

95

Trends
Fault Tolerance

◆ Most systems are not fault tolerant

» But the general population expects things to work

» Phone system → IP phones?

◆ Requires considerable redundancy

» Hardware

» Communication infrastructure

» Software

» Data

◆ File replication will become essential

◆ Systems must be designed to function with partial data

» Mobility

Page 96
CSCE 455/855
Steve Goddard

96

Trends
Fault Tolerance

◆ Down-times and periodic crashes will become less and less
acceptable as computers spread to non-specialists and into
commodity functions

» ATM machines

» Microwaves

» Phone system (IP mode)

◆ Expectations/abilities/costs are not well balanced

» People want more than is there but want it to cost less

» Potential brake on Internet and automation expansion

Page 97
CSCE 455/855
Steve Goddard

97

Trends
Multi-Media

◆ Current data files are rarely more than a few MB

» MM files can exceed GB

» Compression clearly popular because of this and has a
fundamental affect on network requirements and
economics

◆ Video-on-demand

» Significant affect on network traffic

» Perhaps also on file systems

» Real-time support is interesting as well

Page 98
CSCE 455/855
Steve Goddard

98

Trends
Virtual Environments

◆ Many observer’s current “killer application” candidate

» Still no pricing model, so how do you make money?

◆ Extremely challenging distribution issues

» Communication patterns are dynamic

» Small messages

» Fine temporal scale

» Significant scalability potential

◆ Multiple senses

» Sound, touch, smell as well as vision

Page 99
CSCE 455/855
Steve Goddard

99

Summary
◆ Distributed file systems are central to many of the most

popular uses of distributed systems

◆ Transparency is desirable but often hard to achieve

» How do distributed semantics differ from local
❖ Subtly

❖ Intermittently (race conditions)

◆ Name spaces must be adapted in some fashion

» Location transparency and independence

◆ Semantics should be weakened for performance and
correctness vs. accidentally or implicitly

» File access, modification, locking

» Distributed model may be best original choice

Page 100
CSCE 455/855
Steve Goddard

100

Summary

◆ Session semantics and immutable files are attractive
because of performance advantages

» Useful in many situations but importantly different

» Porting poses particular challenges to semantics
❖ Sometimes depends on unpublished behavior

◆ Transactions are attractive

» Well structured

» Reversible

» Often overkill - high overhead

◆ Implementation means hard choices

» Simplicity vs. efficiency vs. scalability

Page 101
CSCE 455/855
Steve Goddard

101

Summary

◆ Stateless servers attractive

» Simple and efficient for many applications
❖ WWW

◆ Caching has a huge affect on

» Performance

» Complexity

» Overhead

◆ Replication and fault tolerance will become increasingly
important and ubiquitous

◆ NFS an instructive example

» Simpler than you might think but widely used

