/~goddard/Courses/CSCE855 Networks cse.unl 50 **Communication for Distributed Systems** • Communication is central V 18/11 ALDL » process management: messages synchronize, coordinate » file mgmt: messages access and transmit files and directory information » device mgmt: messages carry data, access devices » memory mgmt: messages carry data Network Layer » facilities to send and receive messages to addressed locations

» routing: messages are forwarded ♦ the Internet

Communication Networks

• Open System Interconnect (OSI) 7-layer model

3

- » Physical
- » Data Link
- » Network
- » Transport
- » Session
- » Presentation
- » Application

OSI 7-layer model

- ◆ Physical
 - » transmit bits and bytes
 - » LANs
- ♦ Data Link
 - » translate signals (bits/bytes) into frames
 - » checksums, source and destination

Network

- » translate frames into packets
- » packet routing
- » datagrams

OSI 7-layer model

- ♦ Transport
 - » reliable end-to-end byte streams
 - » packet re-sending, packet ordering
 - » virtual circuits

Session

- » high-level naming, bi-directional streams
- » managing more than one communication session

5

- Presentation
 - » translation between protocols
 - » heterogeneous systems
- Application
 - » user applications

OSI 7-layer model (cont.)

- ♦ Higher-level facilities
 - » Application
 - » Presentation
 - » Session
- Basic network communication services
 - » transport
 - » network
- Physical medium and LANs
 - » data-link
 - » physical

OSI 7-layer model (cont.)

- General tradeoff
 - » quite flexible
 - supports a wide range of applications
 - makes communication as transparent as user needs it (i.e. user can choose level as needed)
 - » each layer adds overhead
 - reduce number of layers
 - simplify layers
 - improve implementations

Specific protocols for different problems

Network and Transport Layers

- Network layer does not provide reliability
 - » packets may be lost
 - no means to detect errors
 - higher levels must provide for detection of errors and resending packets
 - » packets may be received out-of-order
 - * large messages broken down into fixed packet size
 - * packets reconstructed to make message at recipient

Network and Transport Layers (cont.)

Transport layer

- » transparent transfer of data
- » reliability provided
 - ✤ re-sending lost messages
 - packet ordering
- Network layer provides services for transport layer
 - » connectionless (IP datagram service)
 - » connection-oriented (X.25 virtual circuit service)

Connectionless and Connection-Oriented Services

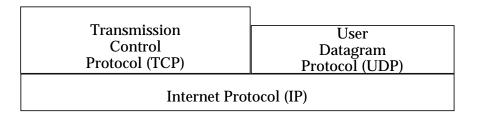
- Connectionless services
 - » datagrams: single message sent from point-to-point
 - » no relationship established between packets
 - » advantages:
 - * protocol is simple
 - ✤ data delivery is fast
 - » disadvantages:
 - * no error handling, ordering of packets
 - * each packet self-identifying; leads to long headers
 - ✤ packets may arrive out of order

Connectionless and Connection-Oriented Services (cont.)

- Connection-oriented service
 - » virtual circuit: data path between endpoints
 - » communication can have a state
 - ✤ send a reply every 5 messages
 - » three phases
 - establish connection
 - transfer data
 - release connection
 - » advantage: reliable communication
 - » disadvantage:
 - protocol complexity makes communication slower
 - error handling, flow control add overhead

Connection-Oriented Services

- Overhead from "virtual circuits"
 - » connection establishment, release
 - » reliability
 - detecting lost messages (time-outs, etc)
 - ✤ re-sending lost messages
 - message acknowledgment
 - packet ordering
 - ordering algorithm
 - $\boldsymbol{\star}$ sending additional order information
- Network layer
 - » virtual circuits do not guarantee reliability
 - » connectionless services (datagrams) dominate


Connection-Oriented Services (cont.)

♦ Transport layer

- » virtual circuits guarantee reliability
 * TCP
- » some connectionless services have reliability services
 - ✤ IP: guaranteed packet delivery with TCP over IP

Internet Protocols

- ◆ Internet Protocol (IP)
 - » connection-less
 - » network routing
 - » datagram construction

Internet Protocols

- Transmission Control Protocol (TCP)
 - » connection-oriented; establish a (logical) virtual circuit

Transmission

Control

Protocol (TCP)

- » positive acks, time-out
- » sequence numbers
- » connection procedures
- » state information is kept

- User Datagram Protocol (UDP)
 - » no acks, messages may arrive out-of-order
 - » essentially IP with some minor additions

User

Datagram

Protocol (UDP)

Asynchronous Transfer Mode (ATM)

- Connection Oriented
- Virtual circuits
- Fixed-size blocks (cells)
- Connection is established and all cells follow the same route over a switched network

Internet Protocol (IP)

ATM Rationale

- Voice transmissions require steady bandwidth
 - » bandwidth needs are low, but need to be consistent
- ◆ Data (esp. real-time) is bursty
 - » high rates needed when transmitting data, no bandwidth otherwise
- Want networks to handle both
 - » solution: small packets that can be rapidly switched

ATM Characteristics

- Fixed size blocks sent over virtual circuits
 » routing info stored in switches
- A packet-switching network
 » meaning packet transmissions can be interleaved
- Packets broken into very small <u>cells</u>
- Allowed to drop cells
 - » usually results in re-transmission of entire packet

ATM (lowest three) Layers

- ♦ Physical
 - » same functionality as OSI Layer 1

◆ ATM

» OSI Layer 2 and part of OSI Layer 3

♦ Adaptation

» OSI Layer 4 but without reliable end-to-end service

ATM Physical Layer

- Designed to use optical technology
- Essentially digital switch technology
 - » star topology with switch as central node
 - » each machine has dedicated connection to switch
 - » multiple communication paths can be open simultaneously
- Switching networks...
 - » allow scaling to large networks

ATM ATM Layer

- Connection-oriented cell routing
 - » connection set up only if sufficient resources are available
- ♦ Cell structure
 - » 48 bytes of data
 - » 5 header fields (53 bytes total)
 - » Virtual Path Identifier (VPI)
 - » Virtual Circuit Identifier (VCI)

ATM ATM Layer (cont.)

- ♦ Virtual channel (VC)
 - » unidirectional association between source and destination
 - » refers to specific channels inside the virtual path
 - » allocated dynamically at connection setup
- ◆ Virtual paths (VP)
 - » collection of VCs
 - » (semi-)permanent connection between pairs of endpoints

ATM Adaptation Layer

- Essentially chops packets into cells ... then reassembles them
- Cells can be dropped
 - » adaptation layer not reliable
- Need higher layers for transport connections
 - » use ATM cells to carry TCP/IP packets
 - » TCP/IP will take care of reliability
 - » means entire packet will need to be re-sent

ATM Switching

- VC and VP together provide routing information
 - » VPI: refers to virtual path on the physical link
 - » VCI: refers to specific VC inside VP
- General routing strategy
 - » VPI field used by routing tables to determine next destination
 - » VPI field modified at each hop
 - » if virtual path used by more than one cell
 - ✤ use VCI field to determine destination
 - VCI field also changed at each hop

ATM Switching (cont.)

- Cells needing the same output line
 - » must choose whether to buffer or not
 - ✤ standard allows to just drop a cell
 - $\boldsymbol{\ast}$ don't want to do that often
 - » buffering at the input port
 - pick one cell to forward, hold others
 - long input queues may result
 - * this blocks cells wanting to go to other output ports
 - ✤ ...known as *head-of-line blocking*
 - » buffering at the output port
 - ✤ queue located at output port
 - removes head-of-line blocking
 - * can also have a pool of input and output buffers

Local Area Networks

- Three dominant topologies
 - » star (digital switch, ATM)
 - » ring
 - » bus

◆ Ethernet

- » multi-access bus technology
- » messages broadcast to all nodes
- » all nodes listen to bus
 - receives only messages addressed to the node
- » bus contention: single communication line

Ethernet

- Implements physical and data link layers
 - » multi-access bus
 - » transmits data link frames
- Access Method: Carrier sense multiple access with collision detection (CSMA/CD)
 - » CSMA to reduce the chance of collisions
 - » CD to detect collisions (and retransmit with back off)

Ethernet CSMA/CD

- ◆ Carrier Sense Multiple Access (CSMA)
 - » carrier sense: listen for clear bus
 - ✤ if busy, wait for clear carrier
 - if clear, send message (transmit a packet)
 - » listen to bus while transmitting for CD
- ◆ Collision Detection (CD)
 - » sender compares outgoing message to received message
 * if mismatch occurs, assume collision has occurred
 - » if collision has occurred
 - each sender waits a period of time (back off)
 - $\boldsymbol{\ast}$ then re-send packet

Ethernet Collision Detection

- ♦ Assume a collision occurs
 - » all nodes back off 2 sec and re-transmits
 - » what will happen?
- Back off intervals
 - » nodes detection collision back off a random time interval
 - » what if another collision occurs
 - ✤ may want to back off a longer time period
 - » binary exponential backoff
 - ★ ith collision back off between 0 and 2ⁱ-1 interval

Ethernet vs. ATM

• Ethernet

- » keep traffic fairly sparse to avoid collisions
 - ✤ gateways to divide network into smaller units
- » limit transmission time
 - keep packet size small
 - keep length of network small
 - ✤ increase transmission speed

♦ ATM

- » packets can be transmitted in parallel
- » "collisions" handled by ATM buffers
 - ✤ buffers are a finite size
 - ✤ cells can be dropped re-transmit packet
- » scaling to larger networks
 - ✤ use larger switches
 - ✤ switching networks
 - ✤ network speed a factor, but importance reduced by parallel transfer in ATM
 - busy machine can be a bottleneck