
Page 1
CSCE 455/855
Steve Goddard Lecture 3

1

CSCE 455/855
Distributed Operating Systems

Process Communication Paradigms

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE855

Page 2
C

SC
E

 455/855
S

teve G
oddard

L
ecture 3

2

◆
O

SI, A
T

M
, E

thernet, T
C

P/IP only half the story
»

p
rovides for sending/receiving m

essages

»
H

ow
 are com

m
unications organized?

❖
coordinate w

hen m
essages are sent

❖
w

here system
 services should reside

P
rocess C

om
m

unication
P

aradigm
s

Page 3
CSCE 455/855
Steve Goddard Lecture 3

3

◆ Communicating to remote processes
» message passing

❖ simplest form of communication

❖ client/server model

❖ messages explicitly manipulated by the user

» remote procedure call (RPC)
❖ procedure calls + stubs

❖ implicit bi-directional flow of information

❖ messages implicit

» transactions
❖ synchronization and serialization of communication

❖ messages implicit, handle multiple messages (chapter 3)

Process Communication
Paradigms (cont.)

Page 4
CSCE 455/855
Steve Goddard Lecture 3

4

◆ Server: provides some service to client processes
» a process that “listens” to a port

» accepts connections from a client

» is passive -- waits for a request

◆ Client: requests services
» must know name of the service (an address)

» establishes connection with server

» requests services (provide data, perform calculations,
etc.)

Client-Server Model

Page 5
CSCE 455/855
Steve Goddard Lecture 3

5

◆ Addressing a server
» a “well-known socket” address

» port address hardwired
❖ port is just an address

❖ operating system gets a message with a port address

❖ sends message to the code handling the port

» bind address to a name

» client requests the service by name or address

Client-Server Model (cont.)

Page 6
CSCE 455/855
Steve Goddard Lecture 3

6

◆ Limited number of servers
» clients can be from anywhere

» knowledge of “well-known address” is all that’s needed

◆ Servers vs. services
» service: a software facility (sometimes implemented as

a set of servers)

» server: software running on one machine

◆ Some problems with C/S model:
» extendibility: as nodes added to system, servers may

become over-loaded with clients

» single point of failure

» multiple servers increase costs

Client-Server Model (cont.)

Page 7
CSCE 455/855
Steve Goddard Lecture 3

7

◆ Addressing
» how to find server addresses

◆ Blocking and Non-Blocking methods
» can either block or continue when sending or receiving

messages

◆ Buffered vs. Unbuffered methods
» choice of buffering messages at the server or with the

kernel

◆ Reliable vs. Unreliable methods
» choices on when to acknowledge a message

Dimensions of the
Client/Server Model

Page 8
CSCE 455/855
Steve Goddard Lecture 3

8

◆ Process-to-process message passing
» machine.process hardwired into client

❖ i.e. the “well-known address”

» Unix sockets

» not transparent to user (programmer)
❖ if addressed server machine is down, system breaks

C/S Addressing Schemes

Page 9
CSCE 455/855
Steve Goddard Lecture 3

9

◆ Broadcasting for process addressing
» each process has unique global address

❖ central server assigns number to process

❖ OR process chooses from a sparse address space

» client broadcasts ‘locate packet’ with server address it
needs

❖ server responds with ‘here I am’

❖ client caches the address

❖ sends subsequent messages to that address

» problem: broadcast takes up bandwidth

C/S Addressing Schemes
(cont.)

Page 10
CSCE 455/855
Steve Goddard Lecture 3

10

◆ Name service approach
» name server hold name-address mappings

❖ server must register this mapping

» client does a look-up on name service
❖ caches address (machine.address)

» uses address from then on

» problem: name service is a central component

C/S Addressing Schemes
(cont.)

Page 11
CSCE 455/855
Steve Goddard Lecture 3

11

◆ Blocking (synchronous)
primitives
» when message is sent,

sending process waits until
message has been
successfully sent

» receiving message is
blocked until message is in
process’ buffer

» clearest semantics, easiest
to implement

Blocking vs. Non-Blocking
Primitives

◆ Non-Blocking (asynchronous)
primitives
» send returns immediately

» can’t use buffer until message sent
❖ sender doesn’t know when that’s

happened

❖ copy into kernel buffer, then re-use
the process buffer

❖ but overhead of copy is prohibitive

» receive gets the buffer and returns
control

❖ process must determine if buffer has
been written to

❖ can use an explicit wait to block or
test to poll kernel

Page 12
CSCE 455/855
Steve Goddard Lecture 3

12

◆ Buffered (buffer at kernel)
» server requests a mailbox

from the kernel

» receive removes a message
from the mailbox

» mailboxes can fill up
❖ messages can be discarded

or kept for a time

Buffered vs. Unbuffered
Primitives

◆ Unbuffered (buffer at server)
» kernel copies message to process

buffer and unblocks process

» What if message is received
before process does a receive?

❖ discard the message (sender will
re-transmit)

❖ keep message for a time period

» What happens while the server is
processing a previous request?

❖ multiprogrammed servers

Page 13
CSCE 455/855
Steve Goddard Lecture 3

13

◆ Reliable
» acknowledge each message

❖ results in 4 message per c/s exchange

» reply serves as implicit acknowledge
❖ reply from server is acknowledgment for

the client

❖ can choose to ack the server’s reply

◆ if not, server sends reply again

❖ 2-3 messages per c/s exchange

❖ but hard for client to distinguish between a
slow server and one that’s down

» server sends ack only if service takes too
long

❖ after a time-out, server sends explicit ack

Reliable vs. Unreliable
Primitives

◆ Unreliable
» no acknowledgments

» reliability up to users
(program designers)

❖ note any reliability must
be distributed

Page 14
CSCE 455/855
Steve Goddard Lecture 3

14

◆ Many trade-offs between choices
» acknowledge only entire messages

❖ fewer ack messages

❖ but recovery is more complicated or inefficient

❖ works bet for reliable networks

» acknowledge individual packets
❖ more ack messages

❖ but recovery is easier, more efficient (less packets re-transmitted)

❖ may want to use on unreliable networks

◆ Packet exchanges
» packet types for “I am alive,” “Try again,” etc.

» use to design different protocols

Client/Server Design Issues

Page 15
CSCE 455/855
Steve Goddard Lecture 3

15

◆ Procedure calls for remote communication
» call: blocking send

» called procedure: blocking read, return results

» allows type-checked communication
❖ compiler detects inconsistencies

❖ treated like any other procedure call

◆ Language-level calls on each end of
communication
» caller:

remote procedure X (parameters)

» callee:
 int remote procedure X (parameters)

Remote Procedure Calls

Page 16
CSCE 455/855
Steve Goddard Lecture 3

16

◆ Server stub (caller)
» packs parameter into frame

» receives reply, unpacks

Client
process

Client
Stub

Server
process

Server
Stub

local
call

pack
params

transmit transmitreceive receive

pack
results

process

unpackunpack

return
result

Remote Procedure Calls
Procedure-to-message conversion

◆ Client stub (callee)
» unpacks parameters

» sends reply

Page 17
CSCE 455/855
Steve Goddard Lecture 3

17

◆ Stub compiler
» programmer specifies server specification

» calls compiler with RPC switches
❖ cc prog.c -lrpcsvc -lsun

» compiler automatically creates stub

◆ Server stub
» also created with stub compiler

» server needs to register its services

◆ Server specification
» can choose from a set of parameter types

» or can create own

RPC Stubs

Page 18
CSCE 455/855
Steve Goddard Lecture 3

18

#include <stdio.h>
#include <rpc/rpc.h>

int *nuser (int *indata) {
 int total;

 total = *indata + 2;
 printf ("input data was: %d\n", *indata);
 return (&total);
}

main() {
 registerrpc (200012, 2, 2, nuser, xdr_int, xdr_int);
 svc_run();
 printf ("ERROR, svc_run() returned!!\n");
 exit(1);
}

Low-Level RPC - Server

Page 19
CSCE 455/855
Steve Goddard Lecture 3

19

#include <stdio.h>
#include <rpc/rpc.h>

main (int argc, char *argv[]) {
 int outdata;
 int stat, indata;

 if (argc < 2) {
 printf ("Usage: rpc-c host\n");
 exit(0);
 }

 indata = 2;
 if (stat = callrpc (argv[1], 200012, 2, 2, xdr_int, &indata,
 xdr_int, &outdata) != 0) {
 clnt_perrno(stat);
 exit(1);
 }
 printf ("result received: %d\n\n", outdata);
 exit(0);
}

Low-Level RPC - Client

Page 20
CSCE 455/855
Steve Goddard Lecture 3

20

/* msg.x: used by rpcgen()
to generate;
msg_svc.c (server stub) and msg_clnt.c (client stub)
these were compiled with the client and server code
gcc server.c msg_svc.c -lsun -o serv
gcc client.c msg_clnt.c -lsun -o clnt

serv was run in the background (serv &)
clnt was given a host name and a number (i.e. clnt cse 4)

*/

program MESSAGEPROG {
version MESSAGEVERS {

string PRINTMESSAGE(string) = 1;
} = 1;

} = 0x2000099;

Higher-Level RPC - rpcgen

Page 21
CSCE 455/855
Steve Goddard Lecture 3

21

#include<stdio.h>
#include<rpc/rpc.h>
#include "msg.h"

/* SERVER */
/* msg_proc.c*/

char ** printmessage_1(char **msg) {
 static char *result;
 int rec_num,i;
 char buffer[80];
 rec_num = atoi(*msg);

for (i=0;i<rec_num;i++) {
strcpy(&buffer[i*6],"HELLO ");

}
printf("SERVER RECEIVED %d, SENT: %s \n",

 rec_num,buffer);
result = buffer;
return (&result);

}

Higher-Level RPC - Server

Page 22
CSCE 455/855
Steve Goddard Lecture 3

22

#include<stdio.h>
#include<rpc/rpc.h>
#include "msg.h"

main(int argc, char *argv[]) {
 CLIENT *cl; char **result; char *server;
 char *message;
 server = argv[1]; /* Should check for 2 arguments!!! */
 message = argv[2];
 cl = clnt_create(server, MESSAGEPROG, MESSAGEVERS, "tcp");
 if (cl == NULL) {

clnt_pcreateerror(server);
exit(1);

 }
 result = printmessage_1(&message, cl);
 if (result == NULL) {

clnt_perror(cl,server);
exit(1);

 }
 if (*result == 0) {

printf("message unavailable \n");
exit(1);

 }
 printf("CLIENT RECEIVED MESSAGE: %s\n",*result);
 exit(0);
}

Higher-Level RPC - Client

Page 23
CSCE 455/855
Steve Goddard Lecture 3

23

◆ Call-by-value
» easy, just pass the value

◆ Call-by-reference
» address, not value is passed

» address must make sense on remote machine

◆ Call-by-copy/restore
» copy address space in message

❖ for example, must pass entire array, not just pointer to array

» server manipulates data in its address space

» client must overwrite the data structure when reply is
received

» What about a linked list?

RPC Parameter Passing

Page 24
CSCE 455/855
Steve Goddard Lecture 3

24

◆ Call-by-reference through messages
» whenever pointer referenced, send message to client to

get value

» client stub must be set up to answer server

◆ Parameter marshaling
» problem: different machines represent numbers,

characters, etc., differently

» network-wide canonical form
❖ each machine only responsible for converting from canonical

to local form, but may end up doing unnecessary conversions

◆ from ‘big endian’ to canonical to ‘big endian’...

» client identifies message format
❖ only server needs conversion routines

Parameter Passing (cont.)

Page 25
CSCE 455/855
Steve Goddard Lecture 3

25

◆ Duration of connection
» make connection each time service needed

» keep virtual circuit active between calls

◆ Communication binding
» static: direct communication determined at compile time

» dynamic: communicate through a name service
❖ server exports (registers) its services with the binder

◆ a kind of name server

❖ client makes an import call to binder

❖ if server exists, binder gives address to client

Client/Server Binding

Page 26
CSCE 455/855
Steve Goddard Lecture 3

26

◆ When RPC fails:
» transparency is lost

» client programmers may want to make exception
handlers (transparency is lost)

◆ Lost request messages
» kernel re-sends message after time out

◆ Reply message is lost
» idempotent operations - just ask for service again

» non-idempotent operations are more difficult
❖ assign request number to each request

❖ server refuses to re-do requests

Handling RPC Failures

Page 27
CSCE 455/855
Steve Goddard Lecture 3

27

◆ Client can’t locate server
» need exception handlers

◆ Server crashes
» server crashes (some time) after receiving request

» at least once semantics

» at most once semantics
❖ difficult to guarantee

◆ Client crashes
» client crashes before server replies

» server is active - but can’t send result
❖ known as an orphan

» various methods to remove the orphans

Handling RPC Failures (cont.)

Page 28
CSCE 455/855
Steve Goddard Lecture 3

28

◆ Protocols
» same issues as in client-server

» connectionless protocols dominate
❖ performance is needed, LANS are reliable

» customized RPC protocols are common

◆ Acknowledgments
» stop-and-wait

» blast
❖ client sends all packets

❖ server acknowledges with one ack

❖ re-send entire message vs. selective repeat

❖ network chips don’t always have capacity for blast

RPC Implementation Issues

Page 29
CSCE 455/855
Steve Goddard Lecture 3

29

◆ Critical path analysis
» context switching most expensive

❖ busy wait; then multiprogramming suffers

» also copying between user and kernel address spaces

◆ Copying between address spaces
» varies from 1 to 8 copies per message

» changing memory map to achieve “copying”
❖ kernel changes memory map so buffer is now in user’s

memory map

❖ user program has access to memory without copying

❖ message needs to be on page boundaries

RPC Implementation Issues
(cont.)

Page 30
CSCE 455/855
Steve Goddard Lecture 3

30

◆ Timer management
» lot of time-outs - very CPU intensive

❖ fortunately few need exact time

» sorted list
❖ expensive to update when reply received

» sweep algorithms
❖ each process in process table has ‘timer’ field

❖ zero means timer is off

❖ kernel scans process table for expired timers

RPC Implementation Issues
(cont.)

Page 31
CSCE 455/855
Steve Goddard Lecture 3

31

◆ Global variables
» remote procedures don’t have access to globals

» Will RPC ever achieve full transparency?

◆ Pipe structures
» p1 <f1 | p2 | p3 >f2

» read-driven: each program is an active client requesting
a read

❖ p1 requests read from f1

❖ p2 requests read from p1

❖ p3 requests read from p2

❖ file server needs to act as a client requesting read from p3 - but
it’s role is as a server!

» write-driven: mirror image problem

Problems Inherent to RPC

Page 32
CSCE 455/855
Steve Goddard Lecture 3

32

◆ Message Passing
» user is explicitly concerned

with message manipulation

» need to define syntax and
semantics

» flexibility, any semantics can
be defined

RPC vs. Message Passing

◆ RPC
» message passing accomplished

transparently

» syntax and semantics are given

» semantics are set
❖ blocking send by client
❖ blocking read by server

◆ Performance issues still an open issue
» concurrency not supported well by RPC

» applications may experience different performance differences

❖ implementation is crucial and not yet well-established

Page 33
CSCE 455/855
Steve Goddard Lecture 3

33

◆ RPC: communication only involves two processes
» note: not so for general client/server model

◆ Group definition
» set of processes working together

» processes free to join or leave group

» messages sent to all in a group

» only group has access to communication

Group Communication

Page 34
CSCE 455/855
Steve Goddard Lecture 3

34

◆ Multicasting
» special network address used to define groups

» machine listens only if part of group

◆ Broadcasting
» message sent to all machines

» kernel determines if any processes in the group

◆ Unicasting
» send point-to-point message to all in group

Group Communication
(cont.)

Page 35
CSCE 455/855
Steve Goddard Lecture 3

35

◆ Closed vs. open groups
» closed doesn’t allow outside

messages - parallel
processing

Group Communication
Design Issues

◆ Peer vs. hierarchical groups
» decision making in groups

» all participate vs. coordinator

» with coordinator, must have
election algorithm if
coordinator dies

◆ Group membership
» group server to maintain group status

❖ falls into centralized trap

» member crashes must be discovered

» when joining group, must get all messages immediately
❖ when leaving, cannot receive any more messages

Page 36
CSCE 455/855
Steve Goddard Lecture 3

36

◆ Group addressing
» multicast

❖ message sent to all machines with process in group

» broadcast
❖ message must be discarded by machines not in group

» unicast
❖ kernel sends message to each machine

» group members send to group members
❖ requires each member to maintain group list

Group Communication
Design Issues (cont.)

Page 37
CSCE 455/855
Steve Goddard Lecture 3

37

◆ Send and receive primitives
» problem: there are potentially n different replies

» solution: treat replies as separate messages
❖ but difficult to merge with RPC

» different calls for group communication
❖ group_send

❖ group_receive

Group Communication
Design Issues (cont.)

Page 38
CSCE 455/855
Steve Goddard Lecture 3

38

◆ Atomic broadcast
» either all get the message or none do

❖ simple semantics: if one member doesn’t get message, just re-
send

❖ no need for selective re-send

» difficult to achieve in practice

» one method:
❖ sender sends message to all in group
❖ if receiver has seen message before, discard it
❖ if message is new to receiver, send to all in group
❖ all (non-crashed) processes will get message
❖ lots of overhead in the form of unnecessary messages

Group Communication
Design Issues (cont.)

Page 39
CSCE 455/855
Steve Goddard Lecture 3

39

◆ Message ordering
» arrival times over LAN is nondeterministic

» global time ordering

» consistent time ordering

Group Communication
Design Issues (cont.)

Page 40
CSCE 455/855
Steve Goddard Lecture 3

40

◆ Overlapping groups
» global time ordering only within a group

◆ Scalability
» sending multicasts & broadcasts to interconnected

LANs
❖ gateways just forward the message

❖ messages will be repeated

» packets can be actively transmitting simultaneously
when LAN interconnected

❖ destroys global ordering

Group Communication
Design Issues (cont.)

