
Page 1
CSCE 455/855
Steve Goddard Lecture 4

1

CSCE 455/855
Distributed Operating Systems

Distributed Synchronization

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE855

Page 2
C

SC
E

 455/855
S

teve G
oddard

L
ecture 4

2

◆
C

oordinating processes to achieve com
m

on goal
»

p
rocess precedence

»
critical sections

◆
S

ynchronization on centralized m
achines

»
sem

aphores, m
onitors, etc.

❖
all rely on shared m

em
ory

»
eve

nt ord
e

ring
 (a

lso
 u

se
d

 for synch
ro

niza
tion

)
❖

just use
 ke

rn
el’s clock

Synchronization

Page 3
CSCE 455/855
Steve Goddard Lecture 4

3

◆ Memory is not shared

◆ Clock is not shared

◆ Decisions are usually based on local information

◆ Centralized solutions undesirable (single point of
failure, performance bottleneck)

Distributed Synchronization

Page 4
CSCE 455/855
Steve Goddard Lecture 4

4

◆ Generally impossible to synchronize clocks
» clock skew - all crystals run at slightly different rates

❖ not a problem for centralized systems

» ‘make’ example in book

» can periodically synchronize clocks
❖ but how long does it take to transmit the synch message?

❖ what if it has to be re-transmitted?

◆ Lamport: clock synchronization does not have to be exact
» synchronization not needed if there is no interaction between

machines

» synchronization only needed when machines communicate

» i.e. must only agree on ordering of interacting events

Global Clock
Synchronization

Page 5
CSCE 455/855
Steve Goddard Lecture 4

5

◆ Happened-before relation
» denoted by →

◆ Partial orders
» ei and ej, are two events

» if ei and ej are in the same process
❖ if ei → ej, then ei occurs before ej

» if ei is the transmission of a message, and ej is its
reception

❖ then ei → ej

» transitivity holds
❖ (ei → ej) and (ej → ek) ⇒ ei → ek

Event Ordering

Page 6
CSCE 455/855
Steve Goddard Lecture 4

6

◆ Substitute synchronized clocks with a global
ordering of events
» LCi is a local clock: contains increasing values

❖ each process i has own LCi

» increment LCi on each event occurrence

» ei → ej ⇒ LC(ei) < LC(ej)

» within same process i, if ej occurs before ek
❖ LCi(ej) < LCi(ek)

» if es is a send event and er receives that send, then
❖ LCi(es) < LCj(er)

Logical Clocks

Page 7
CSCE 455/855
Steve Goddard Lecture 4

7

◆ Timestamp
» each event is given a timestamp t

» if es is a send message m from pi, then t = LCi(es)

» when pj receives m, set LCj value as follows
❖ if t < LCj, increment LCj by one

◆ message regarded as next event on j

❖ if t ≥ LCj, set LCj to t + 1

Logical Clocks (cont.)

Page 8
CSCE 455/855
Steve Goddard Lecture 4

8

◆ Achieves clock synchronization across processes
» all that matters is when the processes need to

synchronize - messages are required

» Two cases:
❖ t < LCj

◆ LCj = LCj + 1

❖ t ≥ LCj

◆ LCj = t + 1

Logical Clocks (cont.)

Page 9
CSCE 455/855
Steve Goddard Lecture 4

9

Physical Clocks

◆ Must be synchronized with real world

◆ In a distributed system, they must be synchronized
with each other as well!

◆ Universal Coordinated Time (UTC)
» Based on International Atomic Time (TAI)

❖ which is based on transitions of a cesium 133 atom

» Broadcast by
❖ NIST out of Fort Collins, CO on WWV (Short Wave)

❖ Geostationary Environment Operation Satellite(GEOS)

Page 10
CSCE 455/855
Steve Goddard Lecture 4

10

Clock Synchronization
Algorithms

◆ Goal
» Keep all clocks as synchronized as possible

» dC/dt = 1

◆ Reality
» Clocks drift with maximum drift rate ρ
» 1−ρ ≤ dC/dt ≤ 1+ρ
» Must synch at least every δ/2ρ time units to keep all

clocks with δ time units of each other

Page 11
CSCE 455/855
Steve Goddard Lecture 4

11

Cristian’s Algorithm

◆ Periodically, clients ask a Time Server for the
correct time, CUTC

» Let time of
❖ request be T0, time of reply be T1, server interrupt handling

time be I

» Cp = CUTC + (T1 - T0 -I)/2
❖ Problem:

◆ time cannot go backwards

◆ slow down or speed up gradually

◆ Improve accuracy with a series of
requests/measurements

Page 12
CSCE 455/855
Steve Goddard Lecture 4

12

Berkeley Algorithm

◆ Time server (daemon) is active
» sends clients its time periodically

» clients send back delta

» server averages responses

» tells each client how to adjust its clock

◆ Can be used with or without a WWV receiver

◆ Highly centralized (as is Cristian’s algorithm)

Page 13
CSCE 455/855
Steve Goddard Lecture 4

13

Decentralized Averaging
Algorithms

◆ Divide time into quanta

◆ At the end of each quantum
» Each machine broadcasts its current time

» Each machine averages all of the responses and sets its
own clock accordingly

» Can discard highest and lowest m values to

◆ Variation account for propagation delay.

Page 14
CSCE 455/855
Steve Goddard Lecture 4

14

◆ Traditional approach
» each message has unique message id

» server maintains list of id’s

» can lose message numbers on server crash

» how long does server keep id’s?

◆ With globally synchronized clocks
» sender assigns a timestamp to message

» server keeps most recent timestamp for each connection
❖ reject any message with lower timestamp (is a duplicate)

» removing old timestamps
❖ G = CurrentTime - MaxLifeTime - MaxClockSkew

❖ timestamps older than G are removed

Using Synchronized Clocks
Implementing at-most-once semantics

Page 15
CSCE 455/855
Steve Goddard Lecture 4

15

◆ After a server crash
» CurrentTime is recomputed

❖ using global synchronization of time

» all messages older than G are rejected

» meaning all messages before crash are rejected as
duplicate

❖ some new messages may be wrongfully rejected

❖ but at-most-once semantics is guaranteed

At-Most-Once Semantics
(cont.)

Page 16
CSCE 455/855
Steve Goddard Lecture 4

16

◆ Problem if two simultaneously update
» solution: distinguish between caching for read or write

❖ readers must invalidate cache if writer is present

❖ server must verify that all readers have invalidated their cache

❖ even if cache is very old

◆ Clock-based cache consistency
» clients given a “lease”

❖ specifies how long cache is valid

❖ clients can renew leases without re-caching

» server invalidates caches whose leases have not expired
❖ if there is a client crash, just wait for lease to expire

» global clock ensures agreement of lease time
❖ even in the face of crashes

Using Synchronized Clocks
Cache Consistency

Page 17
CSCE 455/855
Steve Goddard Lecture 4

17

◆ Centralized mutex
» choose a coordinator

❖ all critical region (CR) requests go to coordinator

❖ coordinator grants or denies permission

◆ Request/reply model
» p1 requests, CR is available

❖ coordinator sends a reply

❖ reply indicates permission to enter CR

» queue subsequent requests
❖ do not send a reply

» when p1 finished, send a reply to first in queue

Mutual Exclusion in
Distributed Systems

Page 18
CSCE 455/855
Steve Goddard Lecture 4

18

◆ Request/grant or deny model
» send ‘permission denied’ when CR is busy

» two possibilities
❖ send ‘grant’ message when process given CR

❖ let requesting process decide what to do - polling

◆ Problems with centralized approach
» single point of failure, bottleneck (the usual...)

◆ Distributed algorithm (Lamport)
» use logical clocks to achieve mutual exclusion

» each process has a request queue

» decisions made locally, global exclusion maintained

Mutual Exclusion (cont.)

Page 19
CSCE 455/855
Steve Goddard Lecture 4

19

◆ Suppose Pi wants access to critical region
» Pi sends message with Tm to every process

» Pj receives message, places it on request queue, sends
ack with Tr

» Pi gets resource when:
❖ 1) Tm in Pi’s request queue < all other time stamps

❖ 2) Pi receives ack messages from all other processes
timestamped later than Tm

❖ note that control is local to Pi

» when i finished with CR
❖ Pi removes Tm from message queue, sends timestamped “Pi

releases resource” message

❖ Pj’s receiving the message remove Tm’s from queue

Lamport’s Distributed Mutex
Alg. Using Logical Clocks

Page 20
CSCE 455/855
Steve Goddard Lecture 4

20

Lamport’s Algorithm
(example) Pi Pj

request (i5) queue(j10)

ack(12)

queue(i5)

Pi in
critical
section

queue(i5, j10)
queue(j10, i5)

request (j10)

release(i5)
queue(j10)

queue(j10)

Pj enters
critical
section

ack(12)

4 9

11 11

14

12

13

12

13

15

Page 21
CSCE 455/855
Steve Goddard Lecture 4

21

◆ Lamport’s algorithm
» requires 3(N-1) messages per critical section request

❖ broadcast mediums reduce to 3 messages

◆ Ricart and Agrawala’s algorithm
» requires only a request and reply message

» (no release required)

» therefore 2(N-1) messages per CS request

Ricart and Agrawala

Page 22
CSCE 455/855
Steve Goddard Lecture 4

22

◆ When receiving a request from process Pi:
» receiver is not in and does not want CR

❖ send OK to Pi

» receiver already in CR
❖ queue the request

» receiver wants CR, but has not been granted
❖ if timestamp > Pi’s, send OK to Pi
❖ otherwise, queue request

◆ When finished with CR, process sends OK to all
processes in queue

◆ Pi enters critical section after receiving OK replies
from all other processes in group

Richart and Agrawala’s
Algorithm

Page 23
CSCE 455/855
Steve Goddard Lecture 4

23

request(i8)
request(k12)

OK(j)OK(j)

OK(k)

i in CR

OK(i)

k in CR

I J K

Richart and Agrawala
Example

Page 24
CSCE 455/855
Steve Goddard Lecture 4

24
request(i7) request(k9)

OK(k)
OK(j)

OK(k)

i in CR

OK(i)

k in CR
I J K

request(j8)

q(j8)
q(j8, k9) q(k9)

j in CR

OK(i)

Richart and Agrawala
Example

Page 25
CSCE 455/855
Steve Goddard Lecture 4

25

◆ No single point of failure
» each process makes independent decisions

» But what if one process doesn’t send an OK?
❖ a form of deadlock

» now there are n points of failure

◆ Group communication is needed
» must maintain a list of group members

» either each process...

» or use primitives discussed in Chapter 2

◆ All processes are involved in all decisions
» increases the overall system load

Problems with Both
Algorithms

Page 26
CSCE 455/855
Steve Goddard Lecture 4

26

◆ General structure
» one token per CR

» only process with token allowed in CR

» token passed from process to process
❖ logical ring

◆ Mutex
» pass token to process i + 1 mod N

» received token gives permission to enter CR
❖ hold token while in CR

» must pass token after exiting CR

» fairness ensured: each process waits at most n-1 entries to
get CR

Token Passing Mutex

Page 27
CSCE 455/855
Steve Goddard Lecture 4

27

◆ Difficulties with token passing mutex
» lost tokens: electing a new token generator

» duplicate tokens: ensure by not generating more than one
token

Token Passing Mutex

Page 28
CSCE 455/855
Steve Goddard Lecture 4

28

◆ Centralized

» simplest, most efficient

» centralized coordinator crashes
❖ need to choose a new coordinator

◆ Distributed

» 2(n-1) messages per entry/exit (Ricart & Agrawala)

» if any process crashes with a non-empty queue,
algorithm won’t work

◆ Token Ring

» if there are lots of CR requests, between 0 and
unbounded # of messages per entry/request

❖ if CR requests rare, unbounded number of messages

» need methods for re-generating a lost token

Mutex Comparison

Page 29
CSCE 455/855
Steve Goddard Lecture 4

29

◆ Centralized approaches often necessary
» best choice in mutex, for example

» but need method of electing a new coordinator when it
fails

◆ General assumptions
» give processes unique system/global numbers

» elect (live) process with highest process number

» processes know process number of members

» all processes agree on new coordinator

Election Algorithms

Page 30
CSCE 455/855
Steve Goddard Lecture 4

30

◆ Suppose the coordinator doesn’t respond to p1’s
request
» p1 holds an election by sending an election message to all

processes with higher numbers

» if p1 receives no responses, p1 is the new coordinator

» if any higher numbered process responds, p1 ends its election

◆ If a process with a higher number receives an election
request
» reply to the sender

❖ to tell sender that it has lost the election

» hold an election of its own

» eventually all give up but highest surviving process

The Bully Algorithm

Page 31
CSCE 455/855
Steve Goddard Lecture 4

31

◆ Example: processes 0-7, 4 detects that 7 has
crashed

The Bully Algorithm (cont.)

2 1

5
4

0

7
3

6

Page 32
CSCE 455/855
Steve Goddard Lecture 4

32

◆ Processes are ordered
» each process knows its successor

» no token involved

◆ Any process noticing that the coordinator is not responding
» sends an election message to its successor

❖ if successor is down, send to next member

❖ therefore each process has full knowledge of the ring

» receiving process adds its number to the message and passes it
along

◆ When message gets back to election initiator
» change message to coordinator

» circulate to all members
❖ note that members now have complete (and ordered) list of members

» coordinator is highest process number

Ring Algorithm

Page 33
CSCE 455/855
Steve Goddard Lecture 4

33

◆ What if more than one process detects a crashed
coordinator?
» more than one election will be produced

» all messages will contain the same information
❖ member process numbers

❖ order of members

» same coordinator is chosen (highest number)

Ring Algorithm (cont.)

