Atomic Transactions

0 Transaction
» performs a single logical function

» all-or-none computation
0 either al operations are executed or none

» must do so in the face of system failures
0 Transaction execution

» start transaction

» series of read and write operations

» either a commit or abort operation

o commit: all transaction operations executed successfully no
transaction operations are allowed to hold

o roll back: restore system to original state (before transaction started)

Transactions
Steve Goddard
goddard@cse.unl.edu

Distributed Operating Systems
http://www.cse.unl.edu/~goddard/Courses/CSCE855

CSCE 455/855

Lecture 5

Page 1

E 45¢
g

N
Ll

CSs
Ste ye Goc

CSCE 455/855
Steve Goddard

Transactions

0 Properties of Transactions
» atomic: actions occur indivisibly
» consistent: system invariants hold
0 for ex: conservation of money

0 note that inside transaction this s violated, but from outside,
the transaction isindivisible

» isolated: transactions do not interfere with each other
0 akaseridizable
0 looks as though all transactions done in some sequential order
» durable: once a transaction commits, results are
permanent

Lecture 5

Page 3

CSCE 455/855
Steve Goddard

Example of Serializable
Transactions

Begin_transaction
X=0;
X =X+1;
End_transaction

Begin_transaction
x=0;
X =X+2;
End_transaction

Begin_transaction
x=0;
X =X+3;
End_transaction

Lecture 5

Page 4

CSCE 455/855
Steve Goddard

Transaction Primitives

0 Transaction commands
» begin-transaction
» end-transaction

» abort-transaction
0 must return to state before the begin-transaction
o often referred to as “roll-back”

» commit-transaction
0 changesin transaction take effect to outside world
0 Transaction operations
» read
» write
» etc...

Lecture 5

Page 5

CSCE 455/855
Steve Goddard

Transaction Example

0 Suppose we have three transactions T1, T2, and T3
» two data elements, A and B
» scheduled in a round-robing scheduler
» one operation per time slice

T T T
Write(A) Tead(A) W T ite(A)
Tead(A) Write(B) Tead(B)

W rite(A)
T#| Ts| eventl| event2 | event3 | event4 | event5 | event6 | event7
T1|20 |Aw Ar
T2|21 Ar Bw Aw
T3|22 Aw Br
Lecture 5

Page 6

CSCE 455/855
Steve Goddard

Transaction Example (cont.)

0 Objective: find some ordering in which atomicity
is preserved
» startout Tl- T2 -~ T3
0 but T1reads A after T3 writes
0 nowwehave T3 - T1
0 atomicity is not preserved
0 abort T1
» nowtry T2 T3 - T1
0 then T2 writes A after T3's write
0 meaning T3- T2
0 abort T2
» nowtry T3- T1- T2
o thisworksin theend...

Lecture 5

Page 7

CSCE 455/855
Steve Goddard

Nested Transactions

0 Transaction divided into sub-transactions
» structured as a hierarchy
» internal nodes are masters for its children

» advantages:
0 better performance: aborted sub-transactions do not abort masters
0 increased concurrency: only need to lock sub-transactions

>
o o
&S O O

Lecture 5

Page 8

CSCE 455/855
Steve Goddard

Nested Transactions (cont.)

0 Aborting committed children
» suppose a parent transaction starts several child
transactions

» one or more child commits
0 only after committing is the child’s results visible to parent
0 i.e. atomicity is preserved at child level

» then parent aborts...
0 but child already “committed”

» parent abort must roll back all child transactions
0 even if they have committed

Lecture 5

Page 9

CSCE 455/855
Steve Goddard

I mplementing Transactions

0 Conceptually, atransaction is given a private
workspace
» consisting of all resources it has access to
» before commit: all operations done to private
workspace
» after commit: changes are made to actual workspace
(file system, etc.)
» if the shadowed workspaces of more than one
transaction intersects
0 and one of them has a write operation
0 then there is a conflict
0 one of the transactions must be aborted

Lecture 5

Page 10

CSCE 455/855
Steve Goddard

Implementing Transactions
(cont.)

0 Shadow blocks
» problem: copying files to a private workspace is
expensive!
0 0 just copy the blocks that the transaction needs
0 copy index block for file instead of file
» don’'t need to copy blocks that are only read
» demand-driven copying: only copy when a block is
first modified
0 akind of caching
» write “shadowed” blocks on commit

Lecture 5

Page 11

CSCE 455/855
Steve Goddard

Implementing Transactions
Writeahead L og

0 Log consists of:
» transaction name
» data item name
» old value
» new value

0 Write log before performing write operations
» onto non-volatile storage
0 Transaction log consists of:
» <Ti start>
» series of (Ti, x, old value, new value)
» <Ti commits> or <Ti aborts>
0 Recovery procedures
» undo(Ti): restores a values written by Ti to old values
» redo(Ti): sets all values written by Ti to new values

Lecture 5

Page 12

CSCE 455/855
Steve Goddard

Implementing Transactions
Writeahead L og (cont.)

o If Ti aborts:
» execute undo(Ti)
o If thereisasystem failure

» can use redo(Ti) to make sure all updates are in place|
0 compare writeahead to actual value
0 also use the log to proceed with the transaction

» if an abort is necessary, use undo(Ti)
0 Note that the ‘commit’ operation must be done
atomically

» difficult when different machines, processes are
involved

Lecture 5

Page 13

CSCE 455/855
Steve Goddard

Implementing Transactions
Two-Phase Commit

0 Coordinator is selected (transaction initiator)

» Phase 1
0 coordinator writes ‘prepare’ in log

0 sends ‘prepare’ message to all processes involved in the
commit (subordinates)

0 subordinates write ‘ready’ (or ‘abort’) into log
o0 subordinates reply to coordinator
» Phase 2
0 coordinator logs received replies (or aborts)
o coordinator logs ‘commit’ and sends ‘commit’ message
0 subordinates write ‘commit’ into their log
0 do the commit
0 send ‘finished’ message to coordinator

Lecture 5

Page 14

Implementing Transactions
Two-phase commit (cont.)

» If any subordinate cannot commit, abort transaction
0 if, for example, the subordinate does not respond
» If all respond, ‘commit’ message makes transaction resul
stick
0 i.e. now they are permanent
0 can remove al transaction log entries, if desired
0 Error recovery in two-phase commit uses|log entries
» determine when crash occurred
» proceed from there
» may need to repeat some messages

[%2]

CSCE 455/855
Steve Goddard Lecture5

Page 15

CSCE 455/855
Steve Goddard

Concurrency Control

0 Transactions may need to run simultaneously

» transactions can conflict: one may write to a data item|
others want to read or write

» need methods to synchronize concurrent access
0 Concurrency control methods

» locking

» optimistic concurrency control

» timestamps

Lecture 5

Page 16

CSCE 455/855
Steve Goddard

L ocking

0 Locks
» a semaphore of sorts
» read locks: allown read locks on a resource
» write locks: no other lock is permitted

0 Two-Phase locking
» fine-grained locking can lead to deadlock
» divide lock requests into two phases
0 growing phase: transaction obtains locks, may not release any

0 shrinking phase: once alock is released, no locks can be obtained
for rest of the transaction

Lecture 5

Page 17

CSCE 455/855
Steve Goddard

L ocking

0 Disadvantage of two-phase locking
» concurrency is reduced

» Deadlocks can occur in two-phase locking
0 resource ordering, etc. necessary to prevent deadlocks

Lecture 5

Page 18

CSCE 455/855
Steve Goddard

Two-Phase L ocking

0 Scenario 1
P1
lock RL
lock R2
unl ock R1
unl ock R2
0 Scenario 2
Pl
lock RL
lock R2
unl ock Rl
unl ock R2

P2
lock RL
lock R2
unl ock Rl
unl ock R2

P2
lock R2
lock R1

unl ock Rl
unl ock R2

Lecture 5

Page 19

CSCE 455/855
Steve Goddard

Optimistic Concurrency
Control

0 Conflicting transactions are rare
» therefore let a transaction make all changes
0 without checking for conflicts
» at commit time, check for files that have changed since the
transaction began
o if so, abort
» works best with shadowed implementations
O initial changes made to private workspace
» distributed transactions need some form of global time
0 for comparing time for file changes
0 Paralelismis maximized
» no waiting on locks
» inefficient when an abort is needed
» not a good strategy in systems with many potential conflicts

Lecture 5

Page 20

CSCE 455/855
Steve Goddard

Timestamp Ordering

0 Each transaction assigned a unique timestamp TS(Ti)
» if Ti enters system before Tj,
» TS(Ti) < TS(T))
0 Each data item, Q, gets two timestamps:
» W-timestamp(Q) largest write timestamp
» R-timestamp(Q) largest read timestamp
0 General concept
» process transactions in a serial order
» can use the same file, but must do it in order
» therefore atomicity is preserved

Lecture 5

Page 21

CSCE 455/855
Steve Goddard

Timestamp Ordering (cont.)

0 For aread:
if (TS(Ti) < Wtinmestanp(Q)
{ reject read
roll back and re-start Ti
}
else /* TS(Ti) =2 Wtimestamp(Q */
{ execute read
R-tinestanp = max(R-tinestanp, TS(Ti))
}
0 Timestamp ordering is deadlock-free
» essentially ordering the sequence of file accesses

» no cycles can result

Lecture 5

Page 22

CSCE 455/855
Steve Goddard

Timestamp Ordering
Example

O Threetransactions T1, T2, and T3
» two data elements, A and B
» scheduled in a round-robing scheduler
» one operation per time slice
» use read and write timestamps

TI T T
W rite(A) Tead (A) W rite(A)
Tead (A) WTTTe(B) Tead(B)

W ite(A)

T#| Ts| eventl | event2 | event3 | event4 | event5 | event6 | event7
T1|20
T2|21
T3|22

Lecture 5

Page 23

CSCE 455/855
Steve Goddard

Timestamp Ordering

Example
0 Threetransactions T1, T2, and T3
T1 T2 T3
WIte(A) Tead (A) WIte(A)
Tead (A) Write(B) Tead(B)
W T ite(A)

T#| Ts| eventl | event2 | event3 | event4 | event5 | event6 | event7
T1|20 |Aw Ar
T2|21 Ar Bw Aw
T3|22 Aw Br
Aw Ar Bw B r

10 8 14 16

20 21 21 22

22 21

21

2
Lecture 5

Page 24

