
Page 1
CSCE 455/855
Steve Goddard Lecture 5

1

CSCE 455/855
Distributed Operating Systems

Transactions

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE855

Page 2
C

SC
E

 455/855
S

teve G
oddard

L
ecture 5

2

◆
T

ransaction
»

p
erform

s a single logical function

»
all-or-none com

putation
❖

either all operations are executed or none

»
m

ust do so in the face of system
 failures

◆
T

ransaction execution
»

start transaction

»
series of read and w

rite operations

»
either a com

m
it or abort operation

❖
com

m
it: all transaction operations executed successfully no

transaction operations are allow
ed to hold

❖
roll back: restore system

 to original state (before transaction started)

A
tom

ic T
ransactions

Page 3
CSCE 455/855
Steve Goddard Lecture 5

3

◆ Properties of Transactions
» atomic: actions occur indivisibly

» consistent: system invariants hold
❖ for ex: conservation of money

❖ note that inside transaction this is violated, but from outside,
the transaction is indivisible

» isolated: transactions do not interfere with each other
❖ aka serializable

❖ looks as though all transactions done in some sequential order

» durable: once a transaction commits, results are
permanent

Transactions

Page 4
CSCE 455/855
Steve Goddard Lecture 5

4

Example of Serializable
Transactions

Begin_transaction
x = 0;

x = x+1;

End_transaction

Begin_transaction
x = 0;

x = x+2;

End_transaction

Begin_transaction
x = 0;

x = x+3;

End_transaction

Page 5
CSCE 455/855
Steve Goddard Lecture 5

5

◆ Transaction commands
» begin-transaction

» end-transaction

» abort-transaction
❖ must return to state before the begin-transaction

❖ often referred to as “roll-back”

» commit-transaction
❖ changes in transaction take effect to outside world

◆ Transaction operations
» read

» write

» etc...

Transaction Primitives

Page 6
CSCE 455/855
Steve Goddard Lecture 5

6

◆ Suppose we have three transactions T1, T2, and T3
» two data elements, A and B

» scheduled in a round-robing scheduler

» one operation per time slice

T 1 T 2 T 3
w r i t e (A) r e a d (A) w r i t e (A)
r e a d (A) w r i t e (B) r e a d (B)

w r i t e (A)

T# Ts event1 event2 event3 event4 event5 event6 event7

T1 20 Aw Ar
T2 21 Ar Bw Aw

T3 22 Aw Br

Transaction Example

Page 7
CSCE 455/855
Steve Goddard Lecture 5

7

◆ Objective: find some ordering in which atomicity
is preserved
» start out T1 → T2 → T3

❖ but T1 reads A after T3 writes

❖ now we have T3 → T1

❖ atomicity is not preserved

❖ abort T1

» now try T2 → T3 → T1
❖ then T2 writes A after T3’s write

❖ meaning T3 → T2

❖ abort T2

» now try T3 → T1 → T2
❖ this works in the end...

Transaction Example (cont.)

Page 8
CSCE 455/855
Steve Goddard Lecture 5

8

◆ Transaction divided into sub-transactions
» structured as a hierarchy

» internal nodes are masters for its children

» advantages:
❖ better performance: aborted sub-transactions do not abort masters

❖ increased concurrency: only need to lock sub-transactions

A

B C

D E F G H

I J

Nested Transactions

Page 9
CSCE 455/855
Steve Goddard Lecture 5

9

◆ Aborting committed children
» suppose a parent transaction starts several child

transactions

» one or more child commits
❖ only after committing is the child’s results visible to parent

❖ i.e. atomicity is preserved at child level

» then parent aborts...
❖ but child already “committed”

» parent abort must roll back all child transactions
❖ even if they have committed

Nested Transactions (cont.)

Page 10
CSCE 455/855
Steve Goddard Lecture 5

10

◆ Conceptually, a transaction is given a private
workspace
» consisting of all resources it has access to

» before commit: all operations done to private
workspace

» after commit: changes are made to actual workspace
(file system, etc.)

» if the shadowed workspaces of more than one
transaction intersects

❖ and one of them has a write operation

❖ then there is a conflict

❖ one of the transactions must be aborted

Implementing Transactions

Page 11
CSCE 455/855
Steve Goddard Lecture 5

11

◆ Shadow blocks
» problem: copying files to a private workspace is

expensive!
❖ so just copy the blocks that the transaction needs

❖ copy index block for file instead of file

» don’t need to copy blocks that are only read

» demand-driven copying: only copy when a block is
first modified

❖ a kind of caching

» write “shadowed” blocks on commit

Implementing Transactions
(cont.)

Page 12
CSCE 455/855
Steve Goddard Lecture 5

12

◆ Log consists of:
» transaction name
» data item name
» old value
» new value

◆ Write log before performing write operations
» onto non-volatile storage

◆ Transaction log consists of:
» <Ti start>

» series of (Ti, x, old value, new value)

» <Ti commits> or <Ti aborts>

◆ Recovery procedures
» undo(Ti): restores a values written by Ti to old values

» redo(Ti): sets all values written by Ti to new values

Implementing Transactions
Writeahead Log

Page 13
CSCE 455/855
Steve Goddard Lecture 5

13

◆ If Ti aborts:
» execute undo(Ti)

◆ If there is a system failure
» can use redo(Ti) to make sure all updates are in place

❖ compare writeahead to actual value

❖ also use the log to proceed with the transaction

» if an abort is necessary, use undo(Ti)

◆ Note that the ‘commit’ operation must be done
atomically
» difficult when different machines, processes are

involved

Implementing Transactions
Writeahead Log (cont.)

Page 14
CSCE 455/855
Steve Goddard Lecture 5

14

◆ Coordinator is selected (transaction initiator)
» Phase 1

❖ coordinator writes ‘prepare’ in log

❖ sends ‘prepare’ message to all processes involved in the
commit (subordinates)

❖ subordinates write ‘ready’ (or ‘abort’) into log

❖ subordinates reply to coordinator

» Phase 2
❖ coordinator logs received replies (or aborts)

❖ coordinator logs ‘commit’ and sends ‘commit’ message

❖ subordinates write ‘commit’ into their log

❖ do the commit

❖ send ‘finished’ message to coordinator

Implementing Transactions
Two-Phase Commit

Page 15
CSCE 455/855
Steve Goddard Lecture 5

15

» If any subordinate cannot commit, abort transaction
❖ if, for example, the subordinate does not respond

» If all respond, ‘commit’ message makes transaction results
stick

❖ i.e. now they are permanent

❖ can remove all transaction log entries, if desired

◆ Error recovery in two-phase commit uses log entries
» determine when crash occurred

» proceed from there

» may need to repeat some messages

Implementing Transactions
Two-phase commit (cont.)

Page 16
CSCE 455/855
Steve Goddard Lecture 5

16

◆ Transactions may need to run simultaneously
» transactions can conflict: one may write to a data item

others want to read or write

» need methods to synchronize concurrent access

◆ Concurrency control methods
» locking

» optimistic concurrency control

» timestamps

Concurrency Control

Page 17
CSCE 455/855
Steve Goddard Lecture 5

17

◆ Locks
» a semaphore of sorts

» read locks: allow n read locks on a resource

» write locks: no other lock is permitted

◆ Two-Phase locking
» fine-grained locking can lead to deadlock

» divide lock requests into two phases
❖ growing phase: transaction obtains locks, may not release any

❖ shrinking phase: once a lock is released, no locks can be obtained
for rest of the transaction

Locking

Page 18
CSCE 455/855
Steve Goddard Lecture 5

18

◆ Disadvantage of two-phase locking
» concurrency is reduced

» Deadlocks can occur in two-phase locking
❖ resource ordering, etc. necessary to prevent deadlocks

Locking

Page 19
CSCE 455/855
Steve Goddard Lecture 5

19

◆ Scenario 1
 P1 P2

lock R1 lock R1

... lock R2

lock R2 ...

... unlock R1

unlock R1 unlock R2

unlock R2

◆ Scenario 2
 P1 P2
lock R1 lock R2

... lock R1

lock R2 ...

... unlock R1

unlock R1 unlock R2

unlock R2

Two-Phase Locking

Page 20
CSCE 455/855
Steve Goddard Lecture 5

20

◆ Conflicting transactions are rare
» therefore let a transaction make all changes

❖ without checking for conflicts

» at commit time, check for files that have changed since the
transaction began

❖ if so, abort

» works best with shadowed implementations
❖ initial changes made to private workspace

» distributed transactions need some form of global time
❖ for comparing time for file changes

◆ Parallelism is maximized
» no waiting on locks

» inefficient when an abort is needed

» not a good strategy in systems with many potential conflicts

Optimistic Concurrency
Control

Page 21
CSCE 455/855
Steve Goddard Lecture 5

21

◆ Each transaction assigned a unique timestamp TS(Ti)
» if Ti enters system before Tj,

» TS(Ti) < TS(Tj)

◆ Each data item, Q, gets two timestamps:
» W-timestamp(Q): largest write timestamp

» R-timestamp(Q): largest read timestamp

◆ General concept
» process transactions in a serial order

» can use the same file, but must do it in order

» therefore atomicity is preserved

Timestamp Ordering

Page 22
CSCE 455/855
Steve Goddard Lecture 5

22

◆ For a read:
if (TS(Ti) < W-timestamp(Q))

{ reject read

 roll back and re-start Ti

}

else /* TS(Ti) ≥ W-timestamp(Q) */
{ execute read

 R-timestamp = max(R-timestamp, TS(Ti))

}

◆ Timestamp ordering is deadlock-free
» essentially ordering the sequence of file accesses

» no cycles can result

Timestamp Ordering (cont.)

Page 23
CSCE 455/855
Steve Goddard Lecture 5

23

◆ Three transactions T1, T2, and T3
» two data elements, A and B

» scheduled in a round-robing scheduler

» one operation per time slice

» use read and write timestamps

T 1 T 2 T 3
w r i t e (A) r e a d (A) w r i t e (A)
r e a d (A) w r i t e (B) r e a d (B)

w r i t e (A)

Timestamp Ordering
Example

T# Ts event1 event2 event3 event4 event5 event6 event7

T1 20
T2 21

T3 22

Page 24
CSCE 455/855
Steve Goddard Lecture 5

24

◆ Three transactions T1, T2, and T3
T 1 T 2 T 3

w r i t e (A) r e a d (A) w r i t e (A)
r e a d (A) w r i t e (B) r e a d (B)

w r i t e (A)

A w A r B w B r
1 0 8 1 4 1 6

2 0 2 1 2 1 2 2

2 2 2 1

2 1

Timestamp Ordering
Example

T# Ts event1 event2 event3 event4 event5 event6 event7

T1 20 Aw Ar
T2 21 Ar Bw Aw

T3 22 Aw Br

