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◆
D

efinition of deadlock
»

each process in set is w
aiting for a resource to be

re
lease

d
 by a

n
othe

r p
ro

ce
ss in se

t
❖

the set is som
e subset of all processes

❖
deadlock only involves the processes in the set

D
eadlocks
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◆ Necessary conditions for deadlock
» mutual exclusion

❖ process has exclusive use of resource allocated to it

» hold and wait
❖ process can hold one resource while waiting for another

» no preemption
❖ resources are released only by explicit action by controlling process

❖ requests cannot be withdrawn (i.e. request results in eventual
allocation or deadlock)

» circular wait
❖ given a set of processes {p0,p1,..., pn}, p0 is waiting for a resource

held by p1, is waiting for a resource held by p2, [...], and pn is
waiting for a resource held by p1.

Deadlocks
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◆ No strategy

◆ Avoidance
» allocate resources so deadlock can’t occur

◆ Detection
» let deadlock occur, find deadlocked processes, recover

◆ Prevention
» make it structurally impossible to have a deadlock

Deadlock Handling
Strategies
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◆ Most popular approach

◆ Assumes deadlock rarely occurs
» Becomes more probable with more processes

◆ Catastrophic consequences when it does occur
» may need to re-boot all or some machines in system

No strategy
The “ostrich algorithm”
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◆ General idea:  refuse states that may lead to deadlock
» method for keeping track of states

» need to know resources required by a process

» requires some advance knowledge of resource usage

◆ Banker’s algorithm
» must know maximum number allocated to pi

» keep track of # of resources available

» for each request, make sure max need will not exceed total
available

» under utilizes resources (algorithm assumes max claim will be
requested)

◆ Never used
» advance knowledge not available and CPU-intensive

Deadlock Avoidance
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◆ General method: construct a resource graph and
analyze it
» analyze through resource reductions

» if cycle exists after analysis, deadlock has occurred
❖ processes in cycle are deadlocked

◆ Local graphs
» P1 requests R1

❖ R1’s site places request in local graph

» if cycle exists in local graph, perform reductions to
detect deadlock

◆ Need to calculate union of all graphs
» deadlock cycle may transcend machine boundaries

Centralized Deadlock
Detection
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◆ Cycles don’t always mean deadlock!

P2 P3

P1

Graph Reduction

P2 P3

P1

P2 P3No Deadlock

Deadlock
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◆ All hosts communicate resource state to
coordinator
» construct resource graph on coordinator

» coordinator must be reliable, fast

◆ When to construct the graph
» report every request, acquisition, release

» periodically send set of operations

» whenever cycle detection is called for

Centralized Deadlock
Detection (cont.)

Page 10
CSCE 455/855
Steve Goddard Lecture 6

10

◆ problem:  messages may not arrive in a timely
fashion
» in particular, may arrive out-of-order

» given below, assume
❖ P2 releases R2 (message A)

❖ P1 requests instance of R2 (message B)

P1
R1

P2

R2R1

False Deadlock



Page 11
CSCE 455/855
Steve Goddard Lecture 6

11

◆ problem:  will detect deadlock after message B
» even though no deadlock exists

False Deadlock (cont.)
Initial coordinator representation:                 After receiving message B:

P2

R2R1

P1

P2

R2R1

P1

After receiving message A:
P2

R2R1

P1
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◆ Based on Resource Allocation Graph (RAG)

◆ An edge from Pi to Pj

» means Pi is waiting for  Pj to release a resource

» replaces two edges
❖ Pi →R

❖ R → Pj

◆ deadlocked when a cycle is found

R1 R2

P2P3

P1

P2 P3

P1

Waits-For Graphs (WFGs)
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◆ Chandry-Misra-Haas algorithm
» use waits-for graph

» send probe messages to processes you are waiting on

» if message gets back, deadlock has occurred

◆ Invoke algorithm when process has to wait
» send message to process holding resources

❖ process just blocked

❖ process sending the message

❖ receiving process

» recipient forwards message to all processes it is waiting on

» if message gets back to original sender, deadlock has
occurred

❖ note that first field of message will always be the initiator

Distributed Deadlock
Detection
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◆ p0 gets blocked, resource held by p1
» initial message from p0 to p1: (0, 0, 1)

◆ p1 waiting on p2
» p1 sends message (0, 1, 2) to p2

◆ p2 waiting on p3: (0, 2, 3)

◆ p3 waiting on p4 and p5: (0, 3, 4) and (0, 4, 5)

◆ eventually message gets to p8, which is waiting on p0
» p0 gets message, sees itself as the initiator: (0, 8, 0)

❖ a cycle exists

❖ p0 knows there is deadlock

Distributed Deadlock Detection
An Example
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◆ Prevention
» make deadlocks structurally impossible

» make sure 4 necessary conditions don’t hold
❖ process can only hold one resource at a time
❖ process releases all resources before requesting one
❖ resource ordering

Distributed Deadlock
Prevention
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◆ Arbitrarily order requests - prevents cycles
» two requirements:

❖ global time (Lamport’s will do)

❖ atomic transactions

» Transaction assigned timestamp when it starts
❖ wait for resource only if timestamp is lower (older) than the

transaction waited for

◆ can do the vice-versa...

◆ makes more sense to kill off younger processes

❖ otherwise abort

Distributed Deadlock Prevention
Timestamp-ordering approaches
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◆ wait-die scheme
» Pi requests resource held by Pj

» if TSi < TSj, Pi can wait (Pi is older)

» otherwise Pi is rolled back

» example:   TS1 = 5, TS2 = 10
❖ P1 requests resource held by P2

❖ P2 requests resource held by P1

Timestamp-Based
Prevention
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◆ wound-wait scheme
» same as wait-die...

» but allow preemption of a resource
❖ old process preempts young one

» suppose a process wants a resource held by a younger one
❖ older one preempts younger

❖ younger transaction is aborted

❖ immediately re-starts

❖ assigned new (younger) timestamp

❖ waits for older

» contrast with wait-die

Timestamp-Based
Prevention (cont.)


