
Page 1
CSCE 455/855
Steve Goddard Lecture 7

1

CSCE 455/855
Distributed Operating Systems

Threads

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE855

Page 2
C

SC
E

 455/855
S

teve G
oddard

L
ecture 7

2

◆
“H

e
a

vyw
e

ig
h

t” p
ro

ce
ss

»
norm

a
l process that does not share

m
e

m
ory w

ith
 othe

r proce
sse

s

◆
“Lightw

eight” process: T
hreads

»
m

e
m

ory is sha
re

d w
ith

 othe
r

proce
sse

s

»
m

a
inta

in
 o

w
n state

, p
ro

gra
m

 coun
ter,

stack
C

ode

D
ata

Stack
Stack

pc
pc

thread1
thread 2

Stack

D
ata

Stack

D
ata

C
ode

pc
pc

parent
child

C
ode

T
w

o T
ypes of P

rocesses

Page 3
CSCE 455/855
Steve Goddard Lecture 7

3

◆ Characteristics
» thread shares address space with other threads

❖ therefore has access to same global variables

❖ can also wipe out other threads’ work (overwrite variables, etc)

» also shares open files, signals, semaphores, ports, etc.

» threads have ready, blocked. running states
❖ scheduled just like processes (1 per CPU)

◆ Threads simply replicate a program
» runs the same code

» local variables on private stack, just like any other program

» but now we have >1 instances of the program
❖ which may be at different places in the program

Threads

Page 4
CSCE 455/855
Steve Goddard Lecture 7

4

◆ File servers must block while waiting for disk

◆ May want to “multiprogram” the file server
» while blocked, process next request

◆ Threads a convenient way to do this
» program one file server

» spawn threads as needed

Example Use of Threads

Page 5
CSCE 455/855
Steve Goddard Lecture 7

5

◆ Sharing data is easy
» reduction in interprocess communication overhead

» just synchronize critical sections in shared data

◆ Less overhead for context switching
» address space (paging tables for ex.) is the same

◆ Ease of programming
» only one address space to worry about

Advantages of Threads

Page 6
CSCE 455/855
Steve Goddard Lecture 7

6

◆ User threads
» kernel schedules processes/tasks

» task schedules individual threads

» allows for customized scheduling
algorithms

❖ but must be done within the task
scheduled by kernel

» problem: how other threads get
scheduled

❖ only if current thread releases
CPU (gets blocked)

» some systems don’t have kernel
threads

❖ threads packages for UNIX exist

User vs. Kernel Threads

◆ Kernel threads
» kernel schedules and manages

threads

» when a thread blocks, choose
another thread

❖ kernel can also preempt threads

» either from same or different
process/task

» beware of context switch
❖ between task switching is

expensive

❖ will want to schedule threads from
same task together

Page 7
CSCE 455/855
Steve Goddard Lecture 7

7

◆ Thread package runs on top of kernel
» referred to as ‘user-space runtime system’

» kernel maintains processes

» user program maintains threads
❖ package provides procedures for managing threads - the

runtime system

◆ Advantages
» can run threads on process-oriented systems (like Unix)

» each process can have customized scheduling algorithm

» context switch is minimized

User Threads

Page 8
CSCE 455/855
Steve Goddard Lecture 7

8

◆ Blocking system calls
» if a blocking system call goes to the kernel...

❖ the kernel suspends the process

» want to call another thread when one becomes blocked
❖ use non-blocking calls (some OS’s don’t support these)

❖ Unix select() - use instead of read - if read() would block, call
thread manager instead

◆ Page faults
» kernel would block entire process on page fault

❖ even though another thread may not be blocked

» no real solution to this...

User Threads (cont.)

Page 9
CSCE 455/855
Steve Goddard Lecture 7

9

◆ Preemption of processes
» no good way to perform preemptive scheduling

❖ clock interrupts are at process level

» thread must voluntarily give up CPU

» can lead to deadlock
❖ for ex: waiting for a semaphore with a blocking system call

User Threads (cont.)

Page 10
CSCE 455/855
Steve Goddard Lecture 7

10

◆ Kernel schedules threads, not processes
» when a thread blocks, kernel can schedule:

❖ another thread from the same process

❖ a thread from a different process

» context switch is more expensive
❖ kernel has to maintain process tables with thread entries

◆ User-level problems with page faults, deadlock
don’t occur

Kernel Threads

Page 11
CSCE 455/855
Steve Goddard Lecture 7

11

◆ Multiprocessors
» task environment located in shared memory

» threads can run in parallel on different CPUs

» just need to synchronize shared memory access

◆ Networked environments
» Can a task on machine X have a thread on machine Y?

❖ not without the task environment

» Why are threads an issue for distributed systems?
❖ because server model needs multiple copies running the same

code

Threads in Distributed
Environments

Page 12
CSCE 455/855
Steve Goddard Lecture 7

12

◆ Threads for the client/server model
» each client makes a request to the server

» server executes identical procedure for all calls
❖ context switching may dominate server processing!

» threads reduce overhead

» make server programming easier

Threads in Distributed
Environments

Page 13
CSCE 455/855
Steve Goddard Lecture 7

13

◆ Thread management
» static threads: number of threads is fixed

» dynamic threads: threads can be created and destroyed
at run time

❖ can re-use threads

◆ No protection between threads
» assumption is that threads are designed to cooperate

❖ but global data is shared

❖ what about race conditions?

» dependent on thread scheduling strategy
❖ non-preemptive: thread must explicitly yield CPU

❖ preemptive: race conditions can occur

Programming with Threads

Page 14
CSCE 455/855
Steve Goddard Lecture 7

14

◆ Mutex
» essentially a binary

semaphore

» in C Threads package:
❖ mutex_lock(mutexId)

❖ mutex_unlock(mutexId)

» non-blocking mutex:
“trylock”

» deadlock can occur with
semaphore locks

Programming with Threads
Critical regions v.s. Resource sharing

◆ Condition variables
» use for long term waiting

» using signals on condition variables
reduces probability of deadlock

» condition_wait(conditionId,
mutexId)

❖ queue request on conditionId

❖ then mutex is released

» condition_signal(conditionId)
❖ if a thread is queued in

conditionId, unblock it

Page 15
CSCE 455/855
Steve Goddard Lecture 7

15

◆ Problem: global system
variables
» but the globals are shared

among threads

» errno variable in Unix

» C uses single buffer for each
stream

❖ multiple threads may write
buffer or update pointer
inconsistently

Programming with Threads
Handling global data

◆ Solution: each thread given
private global variable
» create_global(“data1”)

❖ create local space for the global

❖ other threads calling
create_global(“data1”) get a
separate address space

» set_global(“data1”)
❖ write to the local data store

» x = read_global(“data1”)
❖ read the data from local store

Page 16
CSCE 455/855
Steve Goddard Lecture 7

16

◆ User: good performance
» no costly transitions from user to kernel space

◆ Kernel: ease of programming
» no non-blocking reads, etc.

User vs. Kernel Threads
The Trade-off

Page 17
CSCE 455/855
Steve Goddard Lecture 7

17

◆ kernel allocates “virtual processors” to process
» process can allocate them to threads

◆ The upcall
» kernel communication with thread run-time system

» when thread blocks, kernel invoked via blocking system call

» kernel activates run-time system and passes info

» run-time system can now decide which thread to call

◆ Interrupts
» if process is interested in interrupt, kernel calls interrupt

handler in run-time system

» otherwise interrupted thread is re-started after kernel handles
interrupt

Scheduler Activations

Page 18
CSCE 455/855
Steve Goddard Lecture 7

18

◆ Use shared memory to pass
parameters, results
» when started, kernel given

interfaces for both client and
server

❖ kernel creates an argument
stack shared by both

» when client calls server...
❖ client puts info into stack,

traps to kernel

❖ server reads directly from it
address space

❖ results passed in same
manner

RPCs and Threads
Many are satisfied on same machine

◆ Pop-up threads
» server threads serve no

purpose when idle

» therefore discard the thread

» when server invoked, create
thread on-the-fly

❖ map message memory to new
thread

❖ note it is less expensive to
create a new thread than to
restore an existing one...

❖ Why?

