
Page 1
CSCE 455/855
Steve Goddard Lecture 8

1

CSCE 455/855
Distributed Operating Systems

System Models,
Processor Allocation,

Distributed Scheduling,
and

Fault Tolerance

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE855

Page 2
C

SC
E

 455/855
S

teve G
oddard

L
ecture 8

2

◆
E

ach w
orkstation has a processor and an ow

ner

◆
D

isks are optional
»

diskless: n
o disk

❖
low

 cost, easy system
 updates, server bottleneck

»
pa

g
in

g files: sm
a

ll, ch
ea

p
 d

isk for p
a

ging
❖

reduces netw
ork traffic

»
pa

g
in

g files &
 bin

ary: a
pp

lica
tio

n bina
rie

s a
re

 lo
ca

l
❖

further reduces netw
ork traffic, but updates becom

e m
ore difficult

»
pa

g
in

g files &
 bin

aries &
 cachin

g: a
lso cache

 file
 p

ag
es

❖
less netw

ork traffic and load on servers, but cache consistency problem
s

»
full local file system

: each w
orkstatio

n ha
s file system

❖
no need for file servers, but transparency can suffer (ala N

F
S , etc.)

◆
L

ocal processes take precedence over rem
ote

System
 M

odels
 W

orkstation m
odel

Page 3
CSCE 455/855
Steve Goddard Lecture 8

3

◆ Pool of idle processors available for everyone

◆ “Workstations” may not even have a processor

System Models
Processor pool model

Page 4
CSCE 455/855
Steve Goddard Lecture 8

4

◆ Two basic allocation models:
» non-migratory: once process is placed, it cannot be

moved

» migratory: process can move in the middle of execution
❖ must restore state at new CPU

❖ better load balancing, but more complex design

Processor Allocation

Page 5
CSCE 455/855
Steve Goddard Lecture 8

5

◆ Distributed processor management
» if local processor is idle or underutilized, use it

❖ otherwise execute it remotely

» resource manager must:
❖ keep track of idle processors

❖ find one when a request is received

❖ send the process to a remote computer

❖ receive results from remote process

» first problem: find a CPU

Processor Allocation

Page 6
CSCE 455/855
Steve Goddard Lecture 8

6

◆ Server-driven
» idle processors announce their

availability

» processor puts info in a global
(replicated) registry

» broadcast ‘available’ message
❖ but all processors need to

maintain the list

» race conditions can occur
❖ more than one client sends work

to same idle processor

Finding Idle Workstations

◆ Client-driven
» client broadcasts need for a

processor
❖ heterogeneous environments

need info on processing
needs

» idle processors respond with
message to client

❖ servers can delay message in
proportion to load

» client chooses one

Page 7
CSCE 455/855
Steve Goddard Lecture 8

7

◆ Assign process to a CPU
» to minimize network traffic (interprocess

communication)
» processes and messages make a weighted graph

❖ nodes are processes
❖ edges are communication paths weighted by messages

» total network traffic is sum of arcs intersected by
partition

Graph Theory Approach

Page 8
CSCE 455/855
Steve Goddard Lecture 8

8

◆ Assign 9 processes to 3 CPUs
» two different examples:

1

1

1

3

2 2

3

2

2

1

1
2

5

6

1

1

1

3

2 2

3

2

2

1

1
2

5

6

Graph Theory Approach

Page 9
CSCE 455/855
Steve Goddard Lecture 8

9

◆ Essentially looks for tightly clustered processes
» place interacting processes on same machine

◆ Problem with graph approach
» assumes pre-knowledge of message traffic

» lots of information to process

» computationally difficult to achieve

Graph Theory Approach

Page 10
CSCE 455/855
Steve Goddard Lecture 8

10

◆ Objective: fairly divide CPU cycles among users

◆ When a CPU becomes idle:
» if users have processes in their waiting queue...

» decide which should run next

» decision based on “penalty points”

Centralized Load Sharing
Up-Down Algorithm

Page 11
CSCE 455/855
Steve Goddard Lecture 8

11

◆ Central coordinator maintains a usage table
» for each event, message sent to coordinator

◆ Table entries for each user process track “penalty
points” (for each time unit)
» process executing remotely (add points)

» pending processes (subtract points)
❖ i.e. processes on ready queue

» processor idle (move toward zero)

◆ Allocate idle CPU based on penalty points
» process whose owner has fewest points “wins”

» shares computing power equally

Centralized Load Sharing
Up-Down Algorithm

Page 12
CSCE 455/855
Steve Goddard Lecture 8

12

◆ Can visualize algorithm
execution as a scale

◆ Problems with the up-
down algorithm
» centralized control

» lots of events, messages

-2

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21

Centralized Load Sharing
Up-Down Algorithm

◆ Awards light process user
» user (process) occupying no processor with a pending request

Page 13
CSCE 455/855
Steve Goddard Lecture 8

13

rganization is a hierarchy
re “workers”

en nodes are “managers”

l replaced by a “committee”

shown to work (Micros)

Algorithm

Page 14
CSCE 455/855
Steve Goddard Lecture 8

14

◆ Communication paths
» minimized by each level talking one level up or down

the hierarchy

» when processor busy, send message to manager
❖ manager can then propagate the message

❖ can also summarize messages

◆ Manager nodes
» manage k processor (“worker”) nodes

❖ or j manager nodes

» keep track of idle processors
❖ no attempt at keeping track of down hosts

❖ therefore count is an upper bound

Hierarchical Algorithm
(cont.)

Page 15
CSCE 455/855
Steve Goddard Lecture 8

15

◆ Load sharing
» jobs can be created at any level of the hierarchy

» suppose a worker spawns a job needing n processes
❖ need to find and allocate n processes

» immediate manager notified of the request
❖ manager knows of w workers available

❖ if w n, then manager reserves n processors

❖ otherwise send request to next higher manager

Hierarchical Algorithm
(cont.)

Page 16
CSCE 455/855
Steve Goddard Lecture 8

16

◆ Failure of intermediate managers
» superior node detects its failure
» elects a subordinate of the intermediate manager to

replace it

❖ must get updated information from subordinates

Hierarchical Algorithm
(cont.)

Page 17
CSCE 455/855
Steve Goddard Lecture 8

17

◆ Failure of a top-level manager
» top level organized as a committee
» if one top level manager fails, others choose a

subordinate to replace it
» two different methods:

❖ top-level managers do not share information

◆ used only to choose replacement for failed managers

❖ top-level managers pass summary information among
themselves

◆ keep track of each member’s available capacity

◆ usual problems with replicating information

Hierarchical Algorithm
(cont.)

Page 18
CSCE 455/855
Steve Goddard Lecture 8

18

◆ Two methods:
» sender-initiated: machines try to offload processes

» receiver-initiated: idle processors try to find work

◆ General sender-initiated method
» process is created on a workstation

» if current machine is heavily loaded, find a machine
that is not

Distributed Algorithms

Page 19
CSCE 455/855
Steve Goddard Lecture 8

19

◆ Three variants of the general sender-initiated method
(Eager et al.)
» random migration

❖ pick a machine at random

❖ send process to that machine

❖ repeat procedure (i.e. if that machine is loaded, send to another
randomly chosen machine)

» random probes
❖ pick a machine at random

❖ send probes until suitable machine found

❖ try a max of N probes

» probing k machines
❖ probe k machines to get their exact load

❖ send process to least loaded in the set

Distributed Algorithms
(cont.)

Page 20
CSCE 455/855
Steve Goddard Lecture 8

20

◆ Analysis of the three algorithms
» third algorithm (choose best of k) performs best

❖ i.e. load balancing , fewest process migrations, etc.

❖ but not the best overall

❖ must factor in overhead from probes

❖ gain from the algorithm too small to offset additional k probes

» moral of the story: simple algorithms are preferred
❖ overhead from complex algorithms often erase gains

Distributed Algorithms
(cont.)

Page 21
CSCE 455/855
Steve Goddard Lecture 8

21

◆ Problems with sender-initiated distributed
algorithms
» incomplete information

❖ A sends to B, thinking B has a light load

❖ B sends to A, because in reality A’s load is lighter

❖ A sends to B...

» heavily loaded system - all machines overloaded
❖ therefore all machines will try to offload processes

❖ probing won’t accomplish anything (can’t find a lightly loaded
machine)

❖ but additional overhead is incurred (when the system can least
afford it)

Distributed Algorithms
(cont.)

Page 22
CSCE 455/855
Steve Goddard Lecture 8

22

◆ Receiver-initiated distributed algorithm
» when a process terminates, check load

❖ if load is light, look for work

❖ send probe to a machine, or k machines

❖ stop if no work found after N probes

» doesn’t create traffic when system is overloaded
❖ generates traffic when machines are lightly loaded

❖ but what else do the machines have to do anyway?

Distributed Algorithms
(cont.)

Page 23
CSCE 455/855
Steve Goddard Lecture 8

23

◆ Combining approaches
» look for work when lightly loaded, offload work when

heavily loaded
❖ unclear what the dynamics would be

» keep histories of chronically under-loaded or over-
loaded machines

Distributed Algorithms
(cont.)

Page 24
CSCE 455/855
Steve Goddard Lecture 8

24

◆ Simulate contract bidding
» processes buy CPU time

» processors give cycles to highest bidder

◆ A three-step process:
» a new process needing CPU time is created

» a bid is constructed for the process
❖ detailing the computational environment needed

❖ CPU loading, queue & stack sizes, special I/O needs, floating
point hardware, etc.

» processors receive bids, chooses highest set of bidders
it can comfortably accommodate

❖ must multi-cast contract to all bidders

❖ Why?

Bidding Algorithms

Page 25
CSCE 455/855
Steve Goddard Lecture 8

25

◆ One node can simultaneously be a contractor and a
bidder

◆ Contractors can sub-contract a process

Bidding Algorithms
(cont.)

Page 26
CSCE 455/855
Steve Goddard Lecture 8

26

◆ Independent scheduling
» each processor has separate scheduler

» problem: processes may communicate frequently
❖ if A and B aren’t both simultaneously in the ‘running’ state...

❖ will waste time waiting for each other to get the CPU

◆ Co-scheduling
» break schedules for all processes into time slices

» schedule slices in all processors simultaneously
❖ use round-robin scheduling

❖ can use broadcast messages to synchronize

» put communicating groups into the same time slice

» schedule all others into empty time slices

Distributed Scheduling

Page 27
CSCE 455/855
Steve Goddard Lecture 8

27

◆ Overall message
» although fault tolerance is one of the reasons cited in

favor of distributed systems

» it’s really, really, hard to achieve

» and not much research has been done!!

◆ Types of faults
» fail-silent (or fail-stop)

❖ processor just stops or machine crashes

❖ easy to detect

» Byzantine
❖ processor/process continues to run, giving incorrect data

❖ much harder to analyze and correct

Fault Tolerance

Page 28
CSCE 455/855
Steve Goddard Lecture 8

28

◆ Fault tolerance in distributed systems
» transaction processing

❖ Already discussed aborting transactions and two-phase commit

» replication techniques
❖ TMR (Triple Modular Redundancy)

◆ A triplicated voter follows each stage in the circuit

◆ Majority rules

❖ Active replication (state machine approach)

◆ extension of TMR

Fault Tolerance

Page 29
CSCE 455/855
Steve Goddard Lecture 8

29

◆ Active replication
» provide n processors and vote on output

» for example: if 2 out of 3 are the same, use that result

» problem: it takes lots of processors to achieve this
❖ voters must also be treated as suspect

» k fault tolerant: can survive k faulty components
❖ for fail safe: k + 1 - just use the other processor

❖ Byzantine failures: 2k + 1

» another problem: all requests must be serviced in the
same order (in voters and nodes)

❖ atomic broadcast problem

❖ note that only write operations in a file server need to be
ordered

Replication Techniques

Page 30
CSCE 455/855
Steve Goddard Lecture 8

30

◆ Primary backup
» primary does the work...

❖ sends work to backup for synchronization

» general structure: if primary fails, use the backup
❖ no ordering needed

❖ requires fewer processors

» but difficult to agree on when backup takes over in
Byzantine failures

Replication Techniques
(cont.)

Page 31
CSCE 455/855
Steve Goddard Lecture 8

31

◆ General problem
» two units of army (or file servers) need to coordinate a

strike on the enemy

» communicate by messenger, but messenger may be
captured (message lost)

» no matter how many acknowledgments, can never be
sure that the last message was received

Two-Army Problem

Page 32
CSCE 455/855
Steve Goddard Lecture 8

32

◆ General problem
» n generals (or file servers) need to coordinate a strike

on the enemy

» communicate by telephone on perfect lines (reliable
communication)

» m generals are traitors (faulty processors)
❖ give incorrect and contradictory information

» generals must exchange troop strengths
❖ each general will end up with a vector of length n containing

troop strengths of each army

❖ if generali is loyal, elementi is his troop strength

Byzantine Generals Problem

Page 33
CSCE 455/855
Steve Goddard Lecture 8

33

◆ One (limited) solution
» each general sends a reliable message to all other

generals, giving troop strength

1) Each general sends their troop strength

2) Each general collects numbers in a vector

3) Each general sends vector to all other generals

Byzantine Generals Problem

Page 34
CSCE 455/855
Steve Goddard Lecture 8

34

◆ If any value has a majority, that is a true result,
otherwise the value is unknown

◆ In the face of m faulty processors
» can be achieved only if 2m + 1 correctly functioning

processors are present

» meaning you need 3m + 1 processors total

Byzantine Generals Example

