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Real-Time Systems

◆ Real-Time systems have different goals, require
different assumptions, producing different designs
& implementations

◆ In a real-time system, when the answer is
produced is part of the answer’s correctness
» Example: Can an air-traffic control solution created

after the plane has crashed be correct?
❖ Time dependent computation semantics

◆ Real-time computations must produce solutions
which are logically correct and timely
» Timeliness means completion by a deadline
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Real-Time Systems

◆ Key Design Question:
» Must this system be able to guarantee that one or more

computations will complete by a deadline

» NO
❖ No problem, this is not a real-time system

❖ Conventional designs and approaches apply

» YES
❖ OK, but we have a problem because guaranteeing that

computations will complete by deadlines depends on worst
case assumptions and behaviors
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Real-Time Systems
Assumption Assault

◆ Decades of hardware and software design
decisions have used average case performance
metrics
» Bad: explicit design assumptions can become invalid

» Worse: implicit design assumptions can become invalid
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Real-Time Systems
Assumption Assault

◆ Explicit
» Computation time doesn’t matter

❖ Now we need to know worst case execution time

» Computations can be treated independently
❖ They affect one another’s completion time

» Algorithms treating computations fairly are good
❖ Unfair is preferred if it increases deadline satisfaction

◆ Implicit
» Caching is good

❖ Not if it decreases average access time by increasing worst
case access time
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Real-Time Systems
 Requirements

◆ Timeliness
» System must ensure that real-time tasks satisfy their

deadlines

◆ Simultaneity
» More than one event may occur at the same time

» Deadlines of computations serving events must be met

◆ Predictability
» Real-time system must service all events predictably

◆ Adaptability to handle
» Increased load (short term state changes)

» Configuration changes (long term)
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Real-Time Systems
Computation Characteristics

◆ Resource Use
» CPU

» Shared resources implying execution constraints

◆ Precedence Relations
» Among components of a computation

◆ Concurrency Constraints
» Arising from resource use or precedence relations

» Should permit maximum concurrency

◆ Communication Relations
» Time constrained communication among computations

and components→ precedence relations
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Real-Time Systems
Computation Characteristics

◆ Importance
» Different tasks have different levels of importance

» Application semantics’ influence on scheduling

◆ Fault tolerance
» Critical tasks must be fault tolerant

» How critical and how tolerant must be specified and
then dealt with appropriately

◆ Placement constraints
» Hardware dependencies for device control

» Separation on different HW elements for fault tolerance
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Classification

◆ Deadline Classification
» Hard: infinite cost for a missed deadline

» Soft: non-zero but tolerable cost

» Firm: non-zero and less tolerable cost

◆ Periodic/Aperiodic
» Can a computation be handled with periodic attention

◆ Event triggered vs. Time triggered
» Is the system best described as a set of computations

scheduled at particular times or computations executing
in response to external events
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Hard Real-Time

◆ HRT computation failure causes terrible consequences
» Air traffic control, fly-by-wire, machine controllers

» Late results are useless

◆ Often low level operations and combined with fault
tolerance requirements

◆ Often designed as separate components of a distributed
system to simplify analysis
» Isolate HRT components on dedicated resources

◆ Design Challenge
» Correctly distinguish hard from not-so-hard computations

» Redesign components to reduces “hardness”
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Soft Real-Time
◆ Much less obvious temporal constraints

» More complex cost/benefit tradeoff

» “Fast Enough” is often heard but is not specific enough

◆ Rising cost (decreasing value) with lateness
» Deadline violation rate

» Value function: value of completed computation

◆ Examples: Vending Machines, Transaction Servers

◆ Continuum with “fast” conventional systems

◆ Often created by adding time-aware scheduling to a
conventional system
» Limited value when many sub-systems are designed for

the average case (Solaris)
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Firm Real-Time

◆ Emerging and growing class of systems
» Most deadlines must be met accurately

» Occasional misses can be handled
❖ Fail-safe computation semantics required

◆ HRT/SRT compromise
» Intermediate time constraint granularity

» Intermediate deadline violation tolerance

◆ Examples
» Video on demand and Multi-Media conferencing

» Multi-player gaming

» Automated manufacturing
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RT System Characteristics

◆ Often a mixed set of computations (hard, firm, soft)
» One reason for distribution or Multi-CPU

◆ RT used to be limited to embedded applications
» No longer

◆ Often motivated by desire to use a single CPU to
support more than one computation
» Move beyond embedded/dedicated model

» How many CPUs are in a high end BMW?
❖ 55 in 1990 (one for each wheel in ABS)

❖ Move to shared bus and multi-processor architecture

❖ Wiring cost more important than CPU cost
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RT System Characteristics

◆ Fast Context Switch
» Low system overhead

◆ Small size
» Embedded application influence

◆ Minimal Functionality
» Traditionally accepted to achieve small size

» Generalizes to “configurable” OS where developer
includes abilities required, leaving others out

◆ Fast Interrupt Service
» Desired for typical embedded control applications

» Generalizes to low latency event service
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RT System Characteristics
◆ No Virtual Memory

» Traditional for cost and speed

» Combines VM and Logical Address Space concepts

» No page faults makes sense

» No MMU is not as sensible
❖ MMUs now are cheap

◆ Able to lock code and data in memory
» Related to no VM

» Eliminates unpredictable page-fault latency

◆ Real-Time Clock
» User computations often use absolute and elapsed time



Page 17
CSCE 455/855
Steve Goddard Lecture 9

17

RT System Characteristics
◆ System provides alarms and timeouts

» User interface for the system’s real-time clock

◆ Tasks interface to describe scheduling requirements

◆ Traditional  RT systems used methods which must
become
» More adaptive

» More scalable

» More complex

» More dynamic

» More distributed

◆ Major growth and employment opportunity
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Misconceptions

◆ Sometimes arise from “sticker shock”
» Profound nature and extent of changes required

» Requirements can suddenly change when cost is known

◆ Real-time is about device drivers in assembly
language on bare processors
» Many years ago this was true

» Real-time constraints are arising in a wide range of
applications and device drivers now live inside systems

◆ Real-time is the same as fast
» Must be able to predict behavior to guarantee a deadline

» Fast computers often work OK for the wrong reasons
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Misconceptions

◆ All I have to do is buy a fast enough computer
» People (and managers) often  want to simplify by

drowning a problem in CPU cycles

» Sometimes works

» Leaves the system brittle since it can stop working
abruptly and catastrophically if things change

❖ Without deadline awareness everything can be late

» Never a substitute for thought and understanding of the
problem

Page 20
CSCE 455/855
Steve Goddard Lecture 9

20

Misconceptions

◆ There will always be a fast enough computer
» There are always problems where adequate resources

exist without a sufficient surplus to permit sloppiness

» Corollary: using existing resources well can often
reveal a wide variety of new possibilities

◆ We should get it working logically first and then
worry about how fast it is
» Evil - even backwards

» Temporal constraints must be considered as first class
design constraints

» Otherwise many average case vs. worst case
assumptions and vulnerabilities will creep in
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Misconceptions

◆ Real-Time systems cannot use MMUs
» Embedded systems traditionally use CPUs with extra

device control, timers, and other features without MMU

» Crucial distinction between VM and LM
❖ Page faults are unpredictable and huge

» Logical → Physical address mapping can be done
predictably

❖ Explicitly manage the TLB

❖ “Innovation” in real-time systems

❖ Process compilation and protection simplifications

» Current RT systems commonly have a single huge
physical address space → no protection
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Scheduling
◆ Goal: Organize process (task) execution so that

each completes before its deadline

◆ Notice that this is a difference performance metric
than
» Throughput

» Fairness

» Average response time

◆ Must consider: deadline, precedence, resource use

◆ Processor utilization is still an issue but we often
must tolerate lower levels to ensure guarantees
» Code (almost) never follows the worst case path



Page 23
CSCE 455/855
Steve Goddard Lecture 9

23

Scheduling

◆ Value or penalty function is often used (at least
conceptually) to decrease task value after a deadline
» HRT: step function

» SRT: gentle slope

» FRT: steep slope and often more complex constraints
❖ Miss deadlines of no more than 1 in N iterations

◆ The function describes how the “value” of completing
a computation varies with time
» Describe several important characteristics of a task
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Scheduling
Value Functions

◆ Hard RT
» Decay period 0 and decays to 0

◆ Soft → Firm RT
» Decay period extended and decays to 0

Time

0

Arrival

Max

Deadline

Decay Period
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Scheduling
Value Functions

◆ Theoretically we could use complex value functions

◆ Scheduler would have the job of maximizing the
“value” produced by the system within various periods

◆ Classic Design Scenario
» Theoretically attractive

» Impractical for several reasons

◆ Problems
» Value functions become too elaborate and expensive

» Scheduler takes too long to evaluate situation

◆ Classic solution: Simple is better
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Scheduling

◆ Schedulers assume some set of information about
tasks
» Deadline

» WCET

» Resource use (shared, exclusive)

» Communication and precedence relations
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Scheduling

◆ Scheduler characteristics
» Preemptive and non-preemptive

» Static and Dynamic

» Centralized and Distributed

◆ Popular Methods
» Earliest Deadline First (EDF)

» Rate Monotonic

» Explicit Plan
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Preemptive vs. Non-
Preemptive

◆ Can the execution of a task be stopped and restarted

◆ Preemption stops one process and starts another
» This is the behavior assumption of a conventional OS

» Usually done at I/O operations but also at time quantum

» Consistent with “virtual time” assumption

◆ Consider resource use and synchronization
» Preemption while holding a resource leaves it locked

◆ Good idea for average case behavior and fairness but
RT systems do not care about average case or fairness
» Still a good idea sometimes but care is required

» Some task sets can only be scheduled preemptively
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Preemptive vs. Non-
Preemptive

◆ Generally, the highest priority task is run

◆ If a higher priority task arrives or makes  the state
transition Blocked → Runnable
» Current lower priority task is preempted

❖ Running → Runnable

❖ Preempted tasks continue to hold all resources

◆ Scheduling decision is thus reduced to selecting
the runnable process with the highest priority
» O(N) operation to select maximum (best) value

» Assumes a total order on the set of processes

◆ Attractive because it is familiar and simple
» How do we know how to assign  the priorities?
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Schedulability
◆ RT system designers must constantly ask and answer:

» Can this system meet all of its constraints?

◆ Conventional  system designers do not face this
question because execution time is not part of
correctness

◆ It is for RT systems
» Example: Event requiring 50 ms execution time occurs 30

times per second (33.3 ms period)

» Get a (much) faster CPU

◆ This depends on the notion of guarantee
» Must have sufficient CPU and other resources to meet worst

case behavior
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Schedulability

◆ Basic relationship makes the calculation on CPU cycles
» Every task Ti has a period Pi and a computation time Ci

» Utilization (µ) of the processor(s) must be feasible

» CPU utilization of a single task Ti  is:

» For a set of m tasks on N processors satisfaction of the
following equation is a necessary but not sufficient condition:

N
m

i i
P

i
C

≤= ∑
= 1

µ

i
P
i

C
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Schedulability
◆ Preemption may be required

» Consider a simple set of three tasks T1 ,T2 and T3

» Assume that P1 = 2P2 = 4P3

❖ This means that T2  executes twice for every execution of T1

and T3  executes four times for every execution of T1

» Now consider what happens if:

◆ The task set is not schedulable unless the
execution of T1 is split into two pieces through
preemption
» Because T1 cannot complete execution before T3 must

begin executing again

3221 2CCPC −−>
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Schedulability

◆ Note that this analysis provides a lower bound on the
CPU resources required to support a task set

◆ Ignores many sources of overhead, delay, and other
constraints on scheduling
» Context switching

» Interrupt service routines not associated with a task

» Message transmission latency

» Resource use

◆ Some increase CPU requirements, others constrain
the minimum period of some computations
» Constraints can be subtle
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Dynamic vs. Static

◆ Dynamic scheduling algorithms make decisions at run time

◆ Static algorithms simply consult a predefined table to determine
task context switches

» Static algorithms clearly have lower overhead

◆ Conventional systems us priority driven preemptive dynamic
scheduling with no priority re-computation

» Familiar and very successful BUT

» Mechanism not a Policy

◆ Static schedule satisfying all scheduling constraints

» Is correct and sufficient

» This is often lost in the complexity of design debates
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Dynamic vs. Static

◆ Dynamic algorithms are familiar and attractive in
theory because they are:
» Simple

» Provably optimal in  uni-processor system

◆ They often do not take system overhead or
resource use into account
» When they do, they are not nearly as simple

◆ Common dynamic scheduling techniques include
» Earliest Deadline First (EDF)

» Least Laxity First (LLF)

» Rate Monotonic (RM)
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Optimality

◆ Important but dangerous term
» Optimal means, colloquially, “as good as any and better

than most”

» No algorithm can produce better results

◆ Important questions
» What is the performance metric?

❖ Algorithms are optimal “with respect to” some measure

» How much does this optimality cost?

» How does it do with respect to other measures?

» How close to optimal do simpler algorithms come?

» How robust is the algorithm?
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Earliest Deadline First (EDF)

◆ Simple and Fast
» Keep a list of tasks sorted by deadline

» Always run the task with the earliest (lowest) deadline

◆ Optimal for a single CPU and tasks with no ordering or
mutual exclusion (exclusive resource use) constraints
» Many RT systems meet these criteria

◆ Ignores context switching costs

◆ Brittle with respect to assumption violation
» If any WCET or period assumption is violated the whole

system can crash → no tasks meet their deadlines

» Every task almost makes it
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Least Laxity First (LLF)

◆ Also simple and fast
» Laxity is the difference between the time remaining until

the deadline and the computation time

» Interesting because this metric combines aspects of
deadline and computation time

» Execute the task with least laxity at any given moment

◆ Optimal for single CPU and independent tasks

◆ Brittle
» Assumption violation can leave all tasks almost finishing

◆ When problems occur it can also be difficult to
figure out why they happened → cascade failures
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Rate Monotonic (RM)

◆ Classic result by Liu and Layland assigns
priorities according to the task period
» A task Ti has WCET Ci and a period Pi

» Tasks with shorter periods get better priorities

◆ Result is classic because
» Proved optimal for single CPU and independent tasks

» Provides a utilization bound
❖ Roughly .69 in theory but higher in practice

» Uses familiar priority driven scheduling

◆ Brittle with respect to assumption violation
» Difficult failure analysis and cascade failure
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Rate Monotonic (RM)
◆ RM is among the most popular RT scheduling

algorithms
» Software Engineering Institute support and documentation

◆ Provides an easy way to adapt essentially conventional
systems to real-time

◆ Important extensions for
» Aperiodic event server

» Handling tasks which use resources creating mutual
exclusion scheduling constraints

» Even distributed systems

◆ Good, popular, and has equations
» Not a law of the universe
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Rate Monotonic (RM)

◆ Resource use in real-time priority driven systems makes
things more complicated

◆ Resource use in exclusive mode creates execution
constraints which the priority driven scheduler cannot see

◆ Sharing of a mutual exclusion resource among tasks with
different priorities can lead to priority inversion

» A lower priority task can block the execution of  a higher
priority task

◆ Handling priority inversion substantially increases system
complexity

» Implementation, analysis, and performance evaluation
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Rate Monotonic
Priority Inversion Example

◆ Consider three tasks T1, T2, and T3

» T1 has the shortest period and thus the highest priority

» T3 has the longest period and thus the lowest priority

◆ T1  and T3 share a resource R

◆ T3 holds R when T2 becomes runnable
» Scheduler preempts T3 to execute T2

◆ T1 then becomes runnable preempting T2 but T1

blocks when it tries to get R because T3 still holds R

◆ T1 blocking makes T2 the highest priority process
» T2 thus keeps T3 from running and thus freeing R

» T2 thus keeps T1 from running → Priority Inversion
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Rate Monotonic
Priority Inheritance

◆ Priority Inversion is handled by implementing
priority inheritance
» We assume we know resource use by each task

» Preprocessing is performed on the set of tasks after
priorities are assigned to determine what lower priority
tasks can potentially block higher priority tasks

» Table of resource priorities is constructed
❖ Records highest priority use of each resource

» System raises priority of a task to the resource priority
while it uses the resource

» Lower priority task inherits a higher priority

◆ Significantly complicates schedulability analysis
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Explicit Plan Scheduling

◆ Classic scheduling algorithms are often called
myopic because they make decisions based on
limited information
» They are nearsighted

◆ Important to realize that all scheduling algorithms
are   NP-Complete for multiple CPU/Distributed
systems
» Optimality and theoretical advantage evaporates
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Explicit Plan Scheduling

◆ Simply pre-compute when tasks will execute
» Ability to find such a schedule is not guaranteed

» When you have one you are done

» Searching for a feasible schedule is NP-Complete

» Heuristics are used

◆ Plan can be constructed using any of a number of
methods and can consider all task constraints
» Resource use - mutual exclusion

» Precedence Relations

» Communication relations

» Context switching and other system overhead
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Explicit Plan Scheduling

◆ Disadvantage is that we have no guarantee that we
can find a feasible schedule
» Cannot distinguish infeasible task set from failure to

find a feasible schedule

◆ More of a theoretical than a practical problem
» Off-line schedule search task can run for a long time
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Explicit Plan Scheduling
◆ Spring system at Umass-Amherst

» Used explicit plan scheduling
❖ Task precedence relations

❖ Resource use (shared, exclusive)

❖ Explicit delay

❖ Communication relations

◆ Computations written as groups of interacting
processes
» Scheduled as sets of tasks with known WCET, resource

use, precedence and communication relations

» Compiler extensively analyzed process representation
during compilation and constructed a task representation
of the process execution time behavior
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Explicit Plan Scheduling
◆ Less popular for no clear reason

» Strength of CMU and SEI reputation and advocacy of RMS

» Lure of mathematical analysis and optimality
❖ Largely  illusory

◆ Considerable duality in these methods
» RM analysis effectively constructs a “worst case”

execution  plan

» The task set is thus feasible even in the worst case

» Texas Instruments then used this as an explicit schedule

◆ All explicit schedules satisfying execution constraints
are solutions to the scheduling  problem - regardless
of source
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Periodicity and Guarantees

◆ Mathematically based methods (RMS) are often
popular because of perceived reliability and
optimality
» Often optimal in that they succeed if any method

succeeds, not that they have the best CPU utilization

◆ All methods are based on behavioral assumptions
» WCET

» Period

» Resource use

» Communication patterns
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Periodicity and Guarantees

◆ Customers, and designers, often want to combine
issues
» Guarantee and best effort

◆ Priority driven scheduling is attractive because it is
familiar and because the highest priority task is
always run
» BUT: the guarantee of system correctness is based on a

assumption about every process being periodic

» Fairness and minimizing response time are not relevant

» Executing every task according to the periodic
assumptions must be OK or the analysis is bogus
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Periodicity and Guarantees

◆ Many developers simplify their problem by
providing periodic servers for all events
» Then executing then according to a specific plan

» Minimize aperiodic ISR execution time

◆ This approach must be OK or everything is
nonsense
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Language and Compiler
Support

◆ All approaches to RT scheduling assume non-
trivial information about tasks is available
» WCET

» Resource use

» Precedence relations

» Various attributes depending on scheduling method

◆ None of this information is known or used a priori
by conventional systems
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Language and Compiler
Support

◆ Language and compiler support are required to
enable the compiler to provide required
information about task behavior and to have that
information be reliable
» Reliable execution behavior predictions

◆ As RT constraints become more and more
important to a wider range of applications the
ability to express time and behavior constraints
and to make predictions will become more and
more important
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Language and Compiler
Support

◆ RT semantics are creeping into many applications
without the developers or users realizing the
implications

◆ CORBA researchers and developers are
considering applications with RT constraints
» Adding behavioral assertions and constraints to the IDL

◆ Opportunity because RT is likely to become
important “suddenly” from the point of view of
many industry segments and types of users
» Those positioned to help will benefit greatly
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Network Support

◆ Real-time applications are increasingly distributed

» Distributed applications exhibit RT constraints with
increasing frequency

◆ Network support is a component of distributed computations

» Predictability of network behavior thus affects the
predictability of computation behavior

◆ Networks are traditionally designed to reduce cost through

» Statistical multiplexing

» Probabilistic resource allocation → paradigm conflict
❖ Significant source of difficulty

❖ providers are having figuring out how to support new services
economically
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Real-Time Communication

◆ Different from communication in other distributed
systems

◆ High performance is nice, but predictability and
determinism are required!
» Ethernet does not provide a known upper bound on

transmission time.

» Token ring and Time Division Multiple Access
(TDMA) protocols do.
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Real-Time Communication

◆ Communication protocols are often very different
from other distributed systems.
» QoS specification is common

» Time-Triggered Protocol (TTP)

◆ Unusual properties of TTP
» detection of a lost packet implies failed sender

» CRC on the packet plus global state

» automatic group communication membership protocol

» the way clock synchronization is achieved
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Real-Time Communication
Time-Triggered Protocol

◆ Used in MARS real-time system
» consists of a single layer that handles

❖ end-to-end data transport,

❖ clock synchronization, and

❖ membership management.

◆ All nodes are connected by two reliable and
independent TDMA broadcast networks

◆ All packets are sent on both networks in parallel

◆ Expected loss rate is one packet every 30 million
years!
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Current Trends

◆ Time constraints are emerging in more and more areas
» Not from specialized to general computations

» But from general applications to real-time

◆ Distribution is becoming more and more common

◆ COTS hardware is developing such a dominant
price/performance ration that it may dominate
» wearables.stanford.edu

» Matchbox size 66 MHz 486 w/16 MB

» KU Real-Time modifications to Linux

◆ Distributed virtual environments and multimedia may be
sufficient to drive networks toward RT - maybe not
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Emerging Applications

◆ Time constrained transaction systems

◆ Multimedia
» On-demand video/audio

» Multi-media conferencing (harder because of lower
latency constraint) → Games

◆ Smart appliances

◆ Complex distributed control
» Houses, Cars

» Traffic control
❖ Cars, Trains, Ships,  Planes, Elevators → turbo lifts

» Aegis Cruisers


