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Real-Time Systems

0 Conventional programming model
» Independent processes using independent processors
» Independentirtual processors executing wrtual time
» Computation time does not affexirrectness

0 Why was this model created?

» Simplified sharing a physical machine among many
computations

» Simplified improvingaverage case performance in countless
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Real-Time Systems

0 Real-Time systems have different goals, require
different assumptions, producing different designs
& implementations

O In area-time system, when the answer is
produced is part of the answecarectness

» Example: Can an air-traffic control solution created
after the plane has crashed be correct?
0 Time dependent computation semantics

0 Real-time computations must produce solutions

which are logically correct and timely
» Timeliness means completion bgeadline
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Real-Time Systems

0 Key Design Question:
» Must this system be able goarantee that one or more
computations will complete by a deadline
» NO
0 No problem, thisis not areal-time system
0 Conventional designs and approaches apply
» YES

0 OK, but we have a problem because guaranteeing that
computations will complete by deadlines depends on worst
case assumptions and behaviors
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Real-Time Systems
Assumption Assault

0 Decades of hardware and software design
decisions have used average case performance
metrics

» Bad: explicit design assumptions can become invalid
» Worseimplicit design assumptions can become invalid
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Real-Time Systems
Assumption Assault

0 Explicit
» Computation time doesn’t matter
0 Now we need to know worst case execution time
» Computations can be treated independently
0 They affect one another’s completion time
» Algorithms treating computations fairly are good
0 Unfair is preferred if it increases deadline satisfaction
O Implicit
» Caching is good

0 Not if it decreases average access time by increasing worst
case accesstime
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Real-Time Systems
Requirements

0 Timeliness

» System must ensure that real-time tasks satisfy their

deadlines

0 Simultaneity

» More than one event may occur at the same time

» Deadlines of computations serving events must be met
0 Predictability

» Real-time system must service all events predictably
0 Adaptability to handle

» Increased load (short term state changes)

» Configuration changes (long term)
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Real-Time Systems
Computation Characteristics

0 Resource Use
» CPU
» Shared resources implying execution constraints
0 Precedence Relations
» Among components of a computation
0 Concurrency Constraints
» Arising from resource use or precedence relations
» Should permit maximum concurrency
0 Communication Relations

» Time constrained communication among computations
and components precedence relations
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Real-Time Systems
Computation Characteristics

O Importance
» Different tasks have different levels of importance
» Application semantics’ influence on scheduling
0 Fault tolerance
» Critical tasks must be fault tolerant
» How critical and how tolerant must be specified and
then dealt with appropriately
0 Placement constraints
» Hardware dependencies for device control
» Separation on different HW elements for fault tolerance
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Classification

0 Deadline Classification

» Hard: infinite cost for a missed deadline

» Soft: non-zero but tolerable cost

» Firm: non-zero and less tolerable cost
0 Periodic/Aperiodic

» Can a computation be handled with periodic attention
0 Event triggered vs. Time triggered

» |s the system best described as a set of computations
scheduled at particular times or computations executing
in response to external events
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Hard Real-Time

0 HRT computation failure causes terrible consequences
» Air traffic control, fly-by-wire, machine controllers
» Late results are useless
0 Often low level operations and combined with fault
tolerance requirements
0 Often designed as separate components of a distributed
system to simplify analysis
» |solate HRT components on dedicated resources
0 Design Challenge
» Correctly distinguish hard from not-so-hard computations
» Redesign components to reduces “hardness”
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Soft Real-Time

0 Much less obvious temporal constraints
» More complex cost/benefit tradeoff
» “Fast Enough” is often heard but is not specific enough
0 Rising cost (decreasing value) with lateness
» Deadline violation rate
» Value function: value of completed computation
0 Examples: Vending Machines, Transaction Servers
0 Continuum with “fast” conventional systems
0 Often created by adding time-aware scheduling to g
conventional system

» Limited value when many sub-systems are designed for
the average case (Solaris) v
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Firm Real-Time

0 Emerging and growing class of systems
» Most deadlines must be met accurately
» Occasional misses can be handled
0 Fail-safe computation semantics required
0 HRT/SRT compromise
» Intermediate time constraint granularity
» Intermediate deadline violation tolerance
0 Examples
» Video on demand and Multi-Media conferencing
» Multi-player gaming
» Automated manufacturing
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RT System Characteristics

0 Often amixed set of computations (hard, firm, soft)
» One reason for distribution or Multi-CPU
0 RT used to be limited to embedded applications
» No longer
0 Often motivated by desire to use asingle CPU to
support more than one computation
» Move beyond embedded/dedicated model

» How many CPUs are in a high end BMW?
0 55in 1990 (one for each wheel in ABS)
0 Move to shared bus and multi-processor architecture
0 Wiring cost more important than CPU cost
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RT System Characteristics

0 Fast Context Switch
» Low system overhead
0 Small size
» Embedded application influence
0 Minimal Functionality
» Traditionally accepted to achieve small size

» Generalizes to “configurable” OS where developer
includes abilities required, leaving others out

0 Fast Interrupt Service
» Desired for typical embedded control applications
» Generalizes to low latency event service
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RT System Characteristics

0 No Virtual Memory
» Traditional for cost and speed
» Combines VM and Logical Address Space concepts
» No page faults makes sense
» No MMU is not as sensible
0 MMUSs now are cheap
0 Ableto lock code and datain memory
» Related to no VM
» Eliminates unpredictable page-fault latency
0 Real-Time Clock
» User computations often use absolute and elapsed timg
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RT System Characteristics

O System provides alarms and timeouts
» User interface for the system’s real-time clock
0 Tasks interface to describe scheduling requirements
0 Traditiona RT systems used methods which must
become
» More adaptive
» More scalable
» More complex
» More dynamic
» More distributed
0 Magjor growth and employment opportunity
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Misconceptions

0 Sometimes arise from “sticker shock”

» Profound nature and extent of changes required

» Requirements can suddenly change when cost is known|
0 Real-timeis about device driversin assembly

language on bare processors

» Many years ago this was true

» Real-time constraints are arising in a wide range of

applications and device drivers now live inside systems

0 Real-timeisthe same asfast

» Must be able to predict behavior to guarantee a deadline|

» Fast computers often work OK for tiveong reasons
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Misconceptions

0 All I haveto do is buy afast enough computer

» People (and managers) often want to simplify by
drowning a problem in CPU cycles

» Sometimes works

» Leaves the systehrittle since it can stop working
abruptly and catastrophically if things change

0 Without deadline awareness everything can be late

» Never a substitute fahought andunderstanding of the

problem

Lecture9

Page 19

CSCE 455/855
Steve Goddard

Misconceptions

0 There will always be afast enough computer

» There are always problems where adequate resources
exist without a sufficient surplus to permit sloppiness

» Corollary: using existing resourceslil can often

reveal a wide variety of new possibilities
0 We should get it working logically first and then
worry about how fast it is

» Evil - even backwards

» Temporal constraintsust be considered as first class
design constraints

» Otherwise many average case vs. worst case
assumptions and vulnerabilities will creep in
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Misconceptions

0 Real-Time systems cannot use MMUs
» Embedded systems traditionally use CPUs with extra
device control, timers, and other features without MMU
» Crucial distinction between VM and LM
0 Page faults are unpredictable and huge
» Logical - Physical address mapping can be done
predictably
0 Explicitly managethe TLB
0 “Innovation” in real-time systems
0 Process compilation and protection simplifications
» Current RT systems commonly have a single huge
physical address space no protection
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Scheduling

0 Goal: Organize process (task) execution so that
each completes before its deadline
0 Noticethat thisis a difference performance metric
than
» Throughput
» Fairness
» Average response time
0 Must consider: deadline, precedence, resource use
0 Processor utilization is still anissue but we often
must tolerate lower levels to ensure guarantees
» Code (almost) never follows the worst case path
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Scheduling

0 Value or penalty function is often used (at least
conceptually) to decrease task value after a deadline
» HRT: step function
» SRT: gentle slope
» FRT: steep slope and often more complex constraints
0 Miss deadlines of no morethan 1in N iterations
0 The function describes how the “value” of completin
a computation varies with time
» Describe several important characteristics of a task

J

Lecture9

Page 23

CSCE 455/855
Steve Goddard

Scheduling
Value Functions

0 Hard RT
» Decay period 0 and decays to 0

0 Soft - Firm RT
» Decay period extended and decays to 0

Max

<«—— Decay Period

T f :
Arrival Deadline Time—s
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Scheduling
Value Functions

0 Theoretically we could use complex value functions
0 Scheduler would have the job of maximizing the
“value” produced by the system within various period
0 Classic Design Scenario
» Theoretically attractive
» Impractical for several reasons
0 Problems
» Value functions become too elaborate and expensive
» Scheduler takes too long to evaluate situation
0 Classic solution: Simple is better
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Scheduling

0 Schedulers assume some set of information about
tasks
» Deadline
» WCET
» Resource use (shared, exclusive)
» Communication and precedence relations
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Scheduling

0 Scheduler characteristics
» Preemptive and non-preemptive
» Static and Dynamic
» Centralized and Distributed
0 Popular Methods
» Earliest Deadline First (EDF)
» Rate Monotonic
» Explicit Plan
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Preemptive vs. Non-
Preemptive

0 Can the execution of atask be stopped and restarted

0 Preemption stops one process and starts another
» This is the behavior assumption of a conventional OS
» Usually done at I/O operations but also at time quantum
» Consistent with “virtual time” assumption

0 Consider resource use and synchronization
» Preemption while holding a resource leaves it locked

0 Good idea for average case behavior and fairness but
RT systems do not care about average case or fairness
» Still a good idea sometimes but care is required
» Some task sets can only be scheduled preemptively
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Preemptive vs. Non-
Preemptive

0 Generaly, the highest priority task isrun
0 If ahigher priority task arrives or makes the state
transition Blocked — Runnable

» Current lower priority task is preempted
0 Running -~ Runnable
0 Preempted tasks continue to hold all resources

0 Scheduling decision is thus reduced to selecting
the runnable process with the highest priority
» O(N) operation to select maximum (best) value
» Assumes #otal order on the set of processes
0 Attractive because it is familiar and simple
» How do we know how to assign the priorities?
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Schedulability

0 RT system designers must constantly ask and answer:
» Can this system meet all of its constraints?

0 Conventiona system designers do not face this
question because execution timeis not part of
correctness

O Itisfor RT systems

» Example: Event requiring 50 ms execution time occurs 30
times per second (33.3 ms period)

» Get a (much) faster CPU
0 This depends on the notion of guarantee

» Must have sufficient CPU and other resources to meet wolst
case behavior

30
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Schedulability

0 Basic relationship makes the calculation on CPU cycles
» Every taskT, has a period; and a computation timg,
» Utilization (u) of the processor(s) must be feasible
» CPU utilization of a single task is: Cl

i

» For a set omtasks orN processors satisfaction of the
following equation is aecessary but notsufficient condition:
m Ci
H=S —<N
z P
=1
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Schedulability

0 Preemption may be required
» Consider a simple set of three ta3ksT,andT,

» Assume thaP, = 2P, = 4P,

0 Thismeansthat T, executes twice for every execution of T,
and T, executes four times for every execution of T,

» Now consider what happens if:
C >R, -C,-2C,

0 Thetask set is not schedulable unless the
execution of T, is split into two pieces through
preemption

» Becausd, cannot complete execution befdremust
begin executing again
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Schedulability

0 Note that this analysis provides alower bound on the
CPU resources required to support atask set
0 Ignores many sources of overhead, delay, and other
constraints on scheduling
» Context switching
» Interrupt service routines not associated with a task
» Message transmission latency
» Resource use
0 Someincrease CPU requirements, others constrain
the minimum period of some computations
» Constraints can be subtle
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Dynamic vs. Static

0 Dynamic scheduling algorithms make decisions at run time
0 Static algorithms simply consult a predefined table to determine
task context switches
» Static algorithms clearly have lower overhead

0 Conventional systems us priority driven preemptive dynamic
scheduling with no priority re-computation

» Familiar and very successful BUT
» Mechanism not aPolicy
0 Static schedule satisfying all scheduling constraints
» Is correct and sufficient
» This is often lost in the complexity of design debates
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Dynamic vs. Static

0 Dynamic agorithms are familiar and attractive in
theory because they are:
» Simple
» Provablyoptimal in uni-processor system
0 They often do not take system overhead or
resource use into account
» When they do, they are not nearly as simple
0 Common dynamic scheduling techniques include
» Earliest Deadline First (EDF)
» Least Laxity First (LLF)
» Rate Monotonic (RM)
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Optimality

0 Important but dangerous term

» Optimal means, colloquially, “as good as any and better
than most”

» No algorithm can produce better results
O Important questions
» What is the performance metric?
0 Algorithms are optimal “with respect to” some measure
» How much does this optimality cost?
» How does it do with respect to other measures?
» How close to optimal do simpler algorithms come?
» How robust is the algorithm?
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Earliest Deadline First (EDF)

0 Simple and Fast
» Keep a list of tasks sorted by deadline
» Always run the task with the earliest (lowest) deadline
0 Optimal for asingle CPU and tasks with no ordering or
mutual exclusion (exclusive resource use) constraints
» Many RT systems meet these criteria
O lgnores context switching costs
0 Brittle with respect to assumption violation

» If any WCET or period assumption is violated the whole
system can crash no tasks meet their deadlines

» Every task almost makes it
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Least Laxity First (LLF)

0 Also simple and fast

» Laxity is the difference between the time remaining until
the deadline and the computation time

» Interesting because this metric combines aspects of
deadline and computation time

» Execute the task with least laxity at any given moment
0 Optimal for single CPU and independent tasks
O Brittle
» Assumption violation can leave all tasks almost finishing
0 When problems occur it can aso be difficult to
figure out why they happened — cascade failures
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Rate M onotonic (RM)

0 Classic result by Liu and Layland assigns
priorities according to the task period
» A taskT; has WCETC; and a periodp;
» Tasks with shorter periods get better priorities
0 Result is classic because
» Proved optimal for single CPU and independent tasks
» Provides a utilization bound
0 Roughly .69 in theory but higher in practice
» Uses familiar priority driven scheduling
0 Brittle with respect to assumption violation
» Difficult failure analysis and cascade failure
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Rate M onotonic (RM)

0 RM isamong the most popular RT scheduling
algorithms
» Software Engineering Institute support and documentation
0 Provides an easy way to adapt essentially conventional
systems to real-time
O Important extensions for
» Aperiodic event server

» Handling tasks which use resources creatiagal
exclusion scheduling constraints

» Even distributed systems
0 Good, popular, and has equations
» Not a law of the universe
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Rate M onotonic (RM)

0 Resource use in real-time priority driven systems makes
things more complicated
0 Resource use in exclusive mode creates execution
constraints which the priority driven scheduler cannot see
0 Sharing of amutual exclusion resource among tasks with
different priorities can lead to priority inversion
» A lower priority task can block the execution of a higher
priority task
0 Handling priority inversion substantially increases system
complexity
» Implementation, analysiand performance evaluation
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Rate Monotonic
Priority Inversion Example

0 Consider threetasks T,, T,, and Ty
» T, has the shortest period and thus the highest priority
» T, has the longest period and thus the lowest priority
0 T, and T, sharearesource R
O T, holds R when T, becomes runnable
» Scheduler preempfs, to executdl,
0 T, then becomes runnable preempting T, but T,
blockswhen it tries to get R because T still holds R
0 T, blocking makes T, the highest priority process
» T,thus keepd; from running and thus freeirigy
» T, thus keepd, from running— Priority Inversion
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Rate Monotonic
Priority Inheritance

0 Priority Inversion is handled by implementing

priority inheritance

» We assume we know resource use by each task

» Preprocessing is performed on the set of tasks after
priorities are assigned to determine what lower priority
tasks can potentially block higher priority tasks

» Table ofresource priorities is constructed

0 Records highest priority use of each resource

» Systenraises priority of a task to theesource priority
while it uses the resource

» Lower priority taskinherits a higher priority

0 Significantly complicates schedulability analysis
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Explicit Plan Scheduling

0 Classic scheduling algorithms are often called
myopic because they make decisions based on
limited information

» They are nearsighted

O Important to realize that all scheduling algorithms
are NP-Complete for multiple CPU/Distributed
systems

» Optimality and theoretical advantage evaporates
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Explicit Plan Scheduling

0 Simply pre-compute when tasks will execute
» Ability to find such a schedule is not guaranteed
» When you have one you are done

» Searching for a feasible schedule is NP-Complete
» Heuristics are used

0 Plan can be constructed using any of a number of
methods and can consider all task constraints
» Resource use - mutual exclusion
» Precedence Relations
» Communication relations
» Context switching and other system overhead

M
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Explicit Plan Scheduling

0 Disadvantage is that we have no guarantee that we
can find afeasible schedule

» Cannot distinguisinfeasible task set from failure to
find a feasible schedule

0 More of atheoretical than a practical problem
» Off-line schedule search task can run foorg time
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Explicit Plan Scheduling

0 Spring system at Umass-Amherst
» Used explicit plan scheduling
0 Task precedence relations
0 Resource use (shared, exclusive)
0 Explicit delay
o Communication relations
0 Computations written as groups of interacting
processes
» Scheduled as sets of tasks with known WCET, resource
use, precedence and communication relations
» Compiler extensively analyzed process representation
during compilation and constructed a task representation
of the processxecution time behavior

a7
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Explicit Plan Scheduling

0 Less popular for no clear reason
» Strength of CMU and SEI reputation and advocacy of RM
» Lure of mathematical analysis and optimality
0 Largely illusory
0 Considerable duality in these methods

» RM analysis effectively constructs a “worst case”
execution plan

» The task set is thus feasible even in the worst case
» Texas Instruments then used this as an explicit schedule
0 All explicit schedul es satisfying execution constraints
are solutions to the scheduling problem - regardless
of source
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Periodicity and Guarantees

0 Mathematically based methods (RMS) are often
popular because of perceived reliability and
optimality

» Often optimal in that they succeed if any method
succeedsyot that they have the best CPU utilization

0 All methods are based on behavioral assumptions

» WCET

» Period

» Resource use

» Communication patterns
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Periodicity and Guarantees

0 Customers, and designers, often want to combine
issues
» Guarantee and best effort
0 Priority driven scheduling is attractive because it is
familiar and because the highest priority task is
awaysrun

» BUT: the guarantee of system correctness is based on a
assumption about every process being periodic

» Fairness and minimizing response tiane not relevant

» Executing every task according to the periodic
assumptionsnust be OK or the analysis is bogus
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Periodicity and Guarantees

0 Many developers simplify their problem by
providing periodic serversfor all events
» Then executing then according to a specific plan
» Minimize aperiodic ISR execution time

0 This approach must be OK or everything is
nonsense
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L anguage and Compiler
Support

0 All approachesto RT scheduling assume non-
trivia information about tasks is available
» WCET
» Resource use
» Precedence relations
» Various attributes depending on scheduling method
0 None of thisinformation is known or used a priori
by conventional systems

Lecture 9

Page 52




CSCE 455/855
Steve Goddard

L anguage and Compiler
Support

0 Language and compiler support are required to
enable the compiler to provide required
information about task behavior and to have that
information bereliable

» Reliable execution behavior predictions

0 AsRT constraints become more and more
important to awider range of applicationsthe
ability to express time and behavior constraints
and to make predictions will become more and
more important
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L anguage and Compiler
Support

0 RT semantics are creeping into many applications
without the developers or usersrealizing the
implications

0 CORBA researchers and developers are
considering applications with RT constraints

» Adding behavioral assertions and constraints to the IDL

0 Opportunity because RT islikely to become
important “suddenly” from the point of view of
many industry segments and types of users

» Those positioned to help will benefit greatly
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Network Support

0 Real-time applications are increasingly distributed
» Distributed applications exhibit RT constraints with
increasing frequency
0 Network support is a component of distributed computations
» Predictability of network behavior thus affects the
predictability of computation behavior
0 Networks are traditionally designed to reduce cost through
» Statistical multiplexing
» Probabilistic resource allocation paradigm conflict

0 Significant source of difficulty

O providers are having figuring out how to support new services
economically
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Real-Time Communication

0 Different from communication in other distributed
systems
0 High performanceis nice, but predictability and
determinism are required!
» Ethernet does not provide a known upper bound on
transmission time.
» Token ring and Time Division Multiple Access
(TDMA) protocols do.
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Real-Time Communication

0 Communication protocols are often very different
from other distributed systems.
» QoS specification is common
» Time-Triggered Protocol (TTP)
0 Unusual propertiesof TTP
» detection of a lost packet implies failed sender
» CRC on the packet plus global state
» automatic group communication membership protocol
» the way clock synchronization is achieved
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Real-Time Communication
Time-Triggered Protocol

0 Used in MARS real-time system
» consists of a single layer that handles
0 end-to-end data transport,
0 clock synchronization, and
0 membership management.
0 All nodes are connected by two reliable and
independent TDMA broadcast networks

0 All packets are sent on both networksin parallel

0 Expected loss rateis one packet every 30 million
years!
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Current Trends

0 Time constraints are emerging in more and more areas
» Not from specialized to general computations
» But from general applications to real-time

o Distribution is becoming more and more common

0 COTS hardware is developing such a dominant
price/performance ration that it may dominate
» wearables.stanford.edu
» Matchbox size 66 MHz 486 w/16 MB
» KU Real-Time modifications to Linux

0 Distributed virtual environments and multimedia may be
sufficient to drive networks toward RT - maybe not
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Emerging Applications

0 Time constrained transaction systems
0 Multimedia
» On-demand video/audio
» Multi-media conferencing (harder because of lower
latency constraint)» Games
0 Smart appliances
0 Complex distributed control
» Houses, Cars
» Traffic control
0 Cars, Trains, Ships, Planes, Elevators - turbo lifts
» Aegis Cruisers
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