Page 1

Real-Time Systems

0 Conventional programming model
» Independent processes using independent processors
» Independentirtual processors executing wrtual time
» Computation time does not affexirrectness

0 Why was this model created?

» Simplified sharing a physical machine among many
computations

» Simplified improvingaverage case performance in countless

CSCE 455/855

Distributed Operating Systems

Real-Time Systems

Steve Goddard
goddard@cse.unl.edu

http://www.cse.unl.edu/~goddard/Courses/CSCE855

CSCE 455/855
Steve Goddard

situations

Lecture 9

N
Ll

E 45
Ste ye Goc §

CS




CSCE 455/855
Steve Goddard

Real-Time Systems

0 Real-Time systems have different goals, require
different assumptions, producing different designs
& implementations

O In area-time system, when the answer is
produced is part of the answecarectness

» Example: Can an air-traffic control solution created
after the plane has crashed be correct?
0 Time dependent computation semantics

0 Real-time computations must produce solutions

which are logically correct and timely
» Timeliness means completion bgeadline

Lecture9

Page 3

CSCE 455/855
Steve Goddard

Real-Time Systems

0 Key Design Question:
» Must this system be able goarantee that one or more
computations will complete by a deadline
» NO
0 No problem, thisis not areal-time system
0 Conventional designs and approaches apply
» YES

0 OK, but we have a problem because guaranteeing that
computations will complete by deadlines depends on worst
case assumptions and behaviors

Lecture9

Page 4




CSCE 455/855
Steve Goddard

Real-Time Systems
Assumption Assault

0 Decades of hardware and software design
decisions have used average case performance
metrics

» Bad: explicit design assumptions can become invalid
» Worseimplicit design assumptions can become invalid

Lecture9

Page 5

CSCE 455/855
Steve Goddard

Real-Time Systems
Assumption Assault

0 Explicit
» Computation time doesn’t matter
0 Now we need to know worst case execution time
» Computations can be treated independently
0 They affect one another’s completion time
» Algorithms treating computations fairly are good
0 Unfair is preferred if it increases deadline satisfaction
O Implicit
» Caching is good

0 Not if it decreases average access time by increasing worst
case accesstime

Lecture9

Page 6




CSCE 455/855
Steve Goddard

Real-Time Systems
Requirements

0 Timeliness

» System must ensure that real-time tasks satisfy their

deadlines

0 Simultaneity

» More than one event may occur at the same time

» Deadlines of computations serving events must be met
0 Predictability

» Real-time system must service all events predictably
0 Adaptability to handle

» Increased load (short term state changes)

» Configuration changes (long term)

Lecture9

Page 7

CSCE 455/855
Steve Goddard

Real-Time Systems
Computation Characteristics

0 Resource Use
» CPU
» Shared resources implying execution constraints
0 Precedence Relations
» Among components of a computation
0 Concurrency Constraints
» Arising from resource use or precedence relations
» Should permit maximum concurrency
0 Communication Relations

» Time constrained communication among computations
and components precedence relations

Lecture9

Page 8




CSCE 455/855
Steve Goddard

Real-Time Systems
Computation Characteristics

O Importance
» Different tasks have different levels of importance
» Application semantics’ influence on scheduling
0 Fault tolerance
» Critical tasks must be fault tolerant
» How critical and how tolerant must be specified and
then dealt with appropriately
0 Placement constraints
» Hardware dependencies for device control
» Separation on different HW elements for fault tolerance

Lecture9

Page 9

CSCE 455/855
Steve Goddard

Classification

0 Deadline Classification

» Hard: infinite cost for a missed deadline

» Soft: non-zero but tolerable cost

» Firm: non-zero and less tolerable cost
0 Periodic/Aperiodic

» Can a computation be handled with periodic attention
0 Event triggered vs. Time triggered

» |s the system best described as a set of computations
scheduled at particular times or computations executing
in response to external events

Lecture 9

Page 10




CSCE 455/855
Steve Goddard

Hard Real-Time

0 HRT computation failure causes terrible consequences
» Air traffic control, fly-by-wire, machine controllers
» Late results are useless
0 Often low level operations and combined with fault
tolerance requirements
0 Often designed as separate components of a distributed
system to simplify analysis
» |solate HRT components on dedicated resources
0 Design Challenge
» Correctly distinguish hard from not-so-hard computations
» Redesign components to reduces “hardness”

Lecture9

Page 11

CSCE 455/855
Steve Goddard

Soft Real-Time

0 Much less obvious temporal constraints
» More complex cost/benefit tradeoff
» “Fast Enough” is often heard but is not specific enough
0 Rising cost (decreasing value) with lateness
» Deadline violation rate
» Value function: value of completed computation
0 Examples: Vending Machines, Transaction Servers
0 Continuum with “fast” conventional systems
0 Often created by adding time-aware scheduling to g
conventional system

» Limited value when many sub-systems are designed for
the average case (Solaris) v

Lecture 9

Page 12




CSCE 455/855
Steve Goddard

Firm Real-Time

0 Emerging and growing class of systems
» Most deadlines must be met accurately
» Occasional misses can be handled
0 Fail-safe computation semantics required
0 HRT/SRT compromise
» Intermediate time constraint granularity
» Intermediate deadline violation tolerance
0 Examples
» Video on demand and Multi-Media conferencing
» Multi-player gaming
» Automated manufacturing

Lecture9

Page 13

CSCE 455/855
Steve Goddard

RT System Characteristics

0 Often amixed set of computations (hard, firm, soft)
» One reason for distribution or Multi-CPU
0 RT used to be limited to embedded applications
» No longer
0 Often motivated by desire to use asingle CPU to
support more than one computation
» Move beyond embedded/dedicated model

» How many CPUs are in a high end BMW?
0 55in 1990 (one for each wheel in ABS)
0 Move to shared bus and multi-processor architecture
0 Wiring cost more important than CPU cost

Lecture 9

Page 14




CSCE 455/855
Steve Goddard

RT System Characteristics

0 Fast Context Switch
» Low system overhead
0 Small size
» Embedded application influence
0 Minimal Functionality
» Traditionally accepted to achieve small size

» Generalizes to “configurable” OS where developer
includes abilities required, leaving others out

0 Fast Interrupt Service
» Desired for typical embedded control applications
» Generalizes to low latency event service

Lecture9

Page 15

CSCE 455/855
Steve Goddard

RT System Characteristics

0 No Virtual Memory
» Traditional for cost and speed
» Combines VM and Logical Address Space concepts
» No page faults makes sense
» No MMU is not as sensible
0 MMUSs now are cheap
0 Ableto lock code and datain memory
» Related to no VM
» Eliminates unpredictable page-fault latency
0 Real-Time Clock
» User computations often use absolute and elapsed timg

16

Lecture 9

Page 16




CSCE 455/855
Steve Goddard

RT System Characteristics

O System provides alarms and timeouts
» User interface for the system’s real-time clock
0 Tasks interface to describe scheduling requirements
0 Traditiona RT systems used methods which must
become
» More adaptive
» More scalable
» More complex
» More dynamic
» More distributed
0 Magjor growth and employment opportunity

Lecture9

Page 17

CSCE 455/855
Steve Goddard

Misconceptions

0 Sometimes arise from “sticker shock”

» Profound nature and extent of changes required

» Requirements can suddenly change when cost is known|
0 Real-timeis about device driversin assembly

language on bare processors

» Many years ago this was true

» Real-time constraints are arising in a wide range of

applications and device drivers now live inside systems

0 Real-timeisthe same asfast

» Must be able to predict behavior to guarantee a deadline|

» Fast computers often work OK for tiveong reasons

Lecture 9

Page 18




CSCE 455/855
Steve Goddard

Misconceptions

0 All I haveto do is buy afast enough computer

» People (and managers) often want to simplify by
drowning a problem in CPU cycles

» Sometimes works

» Leaves the systehrittle since it can stop working
abruptly and catastrophically if things change

0 Without deadline awareness everything can be late

» Never a substitute fahought andunderstanding of the

problem

Lecture9

Page 19

CSCE 455/855
Steve Goddard

Misconceptions

0 There will always be afast enough computer

» There are always problems where adequate resources
exist without a sufficient surplus to permit sloppiness

» Corollary: using existing resourceslil can often

reveal a wide variety of new possibilities
0 We should get it working logically first and then
worry about how fast it is

» Evil - even backwards

» Temporal constraintsust be considered as first class
design constraints

» Otherwise many average case vs. worst case
assumptions and vulnerabilities will creep in

Lecture 9

Page 20




CSCE 455/855
Steve Goddard

Misconceptions

0 Real-Time systems cannot use MMUs
» Embedded systems traditionally use CPUs with extra
device control, timers, and other features without MMU
» Crucial distinction between VM and LM
0 Page faults are unpredictable and huge
» Logical - Physical address mapping can be done
predictably
0 Explicitly managethe TLB
0 “Innovation” in real-time systems
0 Process compilation and protection simplifications
» Current RT systems commonly have a single huge
physical address space no protection

Lecture9

Page 21

CSCE 455/855
Steve Goddard

Scheduling

0 Goal: Organize process (task) execution so that
each completes before its deadline
0 Noticethat thisis a difference performance metric
than
» Throughput
» Fairness
» Average response time
0 Must consider: deadline, precedence, resource use
0 Processor utilization is still anissue but we often
must tolerate lower levels to ensure guarantees
» Code (almost) never follows the worst case path

Lecture 9

Page 22




Scheduling

0 Value or penalty function is often used (at least
conceptually) to decrease task value after a deadline
» HRT: step function
» SRT: gentle slope
» FRT: steep slope and often more complex constraints
0 Miss deadlines of no morethan 1in N iterations
0 The function describes how the “value” of completin
a computation varies with time
» Describe several important characteristics of a task

J

Lecture9

Page 23

CSCE 455/855
Steve Goddard

Scheduling
Value Functions

0 Hard RT
» Decay period 0 and decays to 0

0 Soft - Firm RT
» Decay period extended and decays to 0

Max

<«—— Decay Period

T f :
Arrival Deadline Time—s

Lecture 9

Page 24




CSCE 455/855
Steve Goddard

Scheduling
Value Functions

0 Theoretically we could use complex value functions
0 Scheduler would have the job of maximizing the
“value” produced by the system within various period
0 Classic Design Scenario
» Theoretically attractive
» Impractical for several reasons
0 Problems
» Value functions become too elaborate and expensive
» Scheduler takes too long to evaluate situation
0 Classic solution: Simple is better

Lecture9

Page 25

CSCE 455/855
Steve Goddard

Scheduling

0 Schedulers assume some set of information about
tasks
» Deadline
» WCET
» Resource use (shared, exclusive)
» Communication and precedence relations

Lecture 9

Page 26




CSCE 455/855
Steve Goddard

Scheduling

0 Scheduler characteristics
» Preemptive and non-preemptive
» Static and Dynamic
» Centralized and Distributed
0 Popular Methods
» Earliest Deadline First (EDF)
» Rate Monotonic
» Explicit Plan

Lecture9

Page 27

CSCE 455/855
Steve Goddard

Preemptive vs. Non-
Preemptive

0 Can the execution of atask be stopped and restarted

0 Preemption stops one process and starts another
» This is the behavior assumption of a conventional OS
» Usually done at I/O operations but also at time quantum
» Consistent with “virtual time” assumption

0 Consider resource use and synchronization
» Preemption while holding a resource leaves it locked

0 Good idea for average case behavior and fairness but
RT systems do not care about average case or fairness
» Still a good idea sometimes but care is required
» Some task sets can only be scheduled preemptively

Lecture 9

Page 28




CSCE 455/855
Steve Goddard

Preemptive vs. Non-
Preemptive

0 Generaly, the highest priority task isrun
0 If ahigher priority task arrives or makes the state
transition Blocked — Runnable

» Current lower priority task is preempted
0 Running -~ Runnable
0 Preempted tasks continue to hold all resources

0 Scheduling decision is thus reduced to selecting
the runnable process with the highest priority
» O(N) operation to select maximum (best) value
» Assumes #otal order on the set of processes
0 Attractive because it is familiar and simple
» How do we know how to assign the priorities?

Lecture9

Page 29

Schedulability

0 RT system designers must constantly ask and answer:
» Can this system meet all of its constraints?

0 Conventiona system designers do not face this
question because execution timeis not part of
correctness

O Itisfor RT systems

» Example: Event requiring 50 ms execution time occurs 30
times per second (33.3 ms period)

» Get a (much) faster CPU
0 This depends on the notion of guarantee

» Must have sufficient CPU and other resources to meet wolst
case behavior

30

CSCE 455/855
Steve Goddard Lecture 9

Page 30




CSCE 455/855
Steve Goddard

Schedulability

0 Basic relationship makes the calculation on CPU cycles
» Every taskT, has a period; and a computation timg,
» Utilization (u) of the processor(s) must be feasible
» CPU utilization of a single task is: Cl

i

» For a set omtasks orN processors satisfaction of the
following equation is aecessary but notsufficient condition:
m Ci
H=S —<N
z P
=1

Lecture9

Page 31

CSCE 455/855
Steve Goddard

Schedulability

0 Preemption may be required
» Consider a simple set of three ta3ksT,andT,

» Assume thaP, = 2P, = 4P,

0 Thismeansthat T, executes twice for every execution of T,
and T, executes four times for every execution of T,

» Now consider what happens if:
C >R, -C,-2C,

0 Thetask set is not schedulable unless the
execution of T, is split into two pieces through
preemption

» Becausd, cannot complete execution befdremust
begin executing again

Lecture 9

Page 32




CSCE 455/855
Steve Goddard

Schedulability

0 Note that this analysis provides alower bound on the
CPU resources required to support atask set
0 Ignores many sources of overhead, delay, and other
constraints on scheduling
» Context switching
» Interrupt service routines not associated with a task
» Message transmission latency
» Resource use
0 Someincrease CPU requirements, others constrain
the minimum period of some computations
» Constraints can be subtle

Lecture9

Page 33

CSCE 455/855
Steve Goddard

Dynamic vs. Static

0 Dynamic scheduling algorithms make decisions at run time
0 Static algorithms simply consult a predefined table to determine
task context switches
» Static algorithms clearly have lower overhead

0 Conventional systems us priority driven preemptive dynamic
scheduling with no priority re-computation

» Familiar and very successful BUT
» Mechanism not aPolicy
0 Static schedule satisfying all scheduling constraints
» Is correct and sufficient
» This is often lost in the complexity of design debates

Lecture 9

Page 34




CSCE 455/855
Steve Goddard

Dynamic vs. Static

0 Dynamic agorithms are familiar and attractive in
theory because they are:
» Simple
» Provablyoptimal in uni-processor system
0 They often do not take system overhead or
resource use into account
» When they do, they are not nearly as simple
0 Common dynamic scheduling techniques include
» Earliest Deadline First (EDF)
» Least Laxity First (LLF)
» Rate Monotonic (RM)

Lecture9

Page 35

CSCE 455/855
Steve Goddard

Optimality

0 Important but dangerous term

» Optimal means, colloquially, “as good as any and better
than most”

» No algorithm can produce better results
O Important questions
» What is the performance metric?
0 Algorithms are optimal “with respect to” some measure
» How much does this optimality cost?
» How does it do with respect to other measures?
» How close to optimal do simpler algorithms come?
» How robust is the algorithm?

Lecture 9

Page 36




CSCE 455/855
Steve Goddard

Earliest Deadline First (EDF)

0 Simple and Fast
» Keep a list of tasks sorted by deadline
» Always run the task with the earliest (lowest) deadline
0 Optimal for asingle CPU and tasks with no ordering or
mutual exclusion (exclusive resource use) constraints
» Many RT systems meet these criteria
O lgnores context switching costs
0 Brittle with respect to assumption violation

» If any WCET or period assumption is violated the whole
system can crash no tasks meet their deadlines

» Every task almost makes it

Lecture9

Page 37

CSCE 455/855
Steve Goddard

Least Laxity First (LLF)

0 Also simple and fast

» Laxity is the difference between the time remaining until
the deadline and the computation time

» Interesting because this metric combines aspects of
deadline and computation time

» Execute the task with least laxity at any given moment
0 Optimal for single CPU and independent tasks
O Brittle
» Assumption violation can leave all tasks almost finishing
0 When problems occur it can aso be difficult to
figure out why they happened — cascade failures

Lecture 9

Page 38




CSCE 455/855
Steve Goddard

Rate M onotonic (RM)

0 Classic result by Liu and Layland assigns
priorities according to the task period
» A taskT; has WCETC; and a periodp;
» Tasks with shorter periods get better priorities
0 Result is classic because
» Proved optimal for single CPU and independent tasks
» Provides a utilization bound
0 Roughly .69 in theory but higher in practice
» Uses familiar priority driven scheduling
0 Brittle with respect to assumption violation
» Difficult failure analysis and cascade failure

Lecture9

Page 39

CSCE 455/855
Steve Goddard

Rate M onotonic (RM)

0 RM isamong the most popular RT scheduling
algorithms
» Software Engineering Institute support and documentation
0 Provides an easy way to adapt essentially conventional
systems to real-time
O Important extensions for
» Aperiodic event server

» Handling tasks which use resources creatiagal
exclusion scheduling constraints

» Even distributed systems
0 Good, popular, and has equations
» Not a law of the universe

Lecture 9

Page 40




CSCE 455/855
Steve Goddard

Rate M onotonic (RM)

0 Resource use in real-time priority driven systems makes
things more complicated
0 Resource use in exclusive mode creates execution
constraints which the priority driven scheduler cannot see
0 Sharing of amutual exclusion resource among tasks with
different priorities can lead to priority inversion
» A lower priority task can block the execution of a higher
priority task
0 Handling priority inversion substantially increases system
complexity
» Implementation, analysiand performance evaluation

Lecture9

Page 41

CSCE 455/855
Steve Goddard

Rate Monotonic
Priority Inversion Example

0 Consider threetasks T,, T,, and Ty
» T, has the shortest period and thus the highest priority
» T, has the longest period and thus the lowest priority
0 T, and T, sharearesource R
O T, holds R when T, becomes runnable
» Scheduler preempfs, to executdl,
0 T, then becomes runnable preempting T, but T,
blockswhen it tries to get R because T still holds R
0 T, blocking makes T, the highest priority process
» T,thus keepd; from running and thus freeirigy
» T, thus keepd, from running— Priority Inversion

Lecture 9

Page 42




CSCE 455/855
Steve Goddard

Rate Monotonic
Priority Inheritance

0 Priority Inversion is handled by implementing

priority inheritance

» We assume we know resource use by each task

» Preprocessing is performed on the set of tasks after
priorities are assigned to determine what lower priority
tasks can potentially block higher priority tasks

» Table ofresource priorities is constructed

0 Records highest priority use of each resource

» Systenraises priority of a task to theesource priority
while it uses the resource

» Lower priority taskinherits a higher priority

0 Significantly complicates schedulability analysis

Lecture9

Page 43

CSCE 455/855
Steve Goddard

Explicit Plan Scheduling

0 Classic scheduling algorithms are often called
myopic because they make decisions based on
limited information

» They are nearsighted

O Important to realize that all scheduling algorithms
are NP-Complete for multiple CPU/Distributed
systems

» Optimality and theoretical advantage evaporates

Lecture 9

Page 44




CSCE 455/855
Steve Goddard

Explicit Plan Scheduling

0 Simply pre-compute when tasks will execute
» Ability to find such a schedule is not guaranteed
» When you have one you are done

» Searching for a feasible schedule is NP-Complete
» Heuristics are used

0 Plan can be constructed using any of a number of
methods and can consider all task constraints
» Resource use - mutual exclusion
» Precedence Relations
» Communication relations
» Context switching and other system overhead

M

Lecture9

Page 45

CSCE 455/855
Steve Goddard

Explicit Plan Scheduling

0 Disadvantage is that we have no guarantee that we
can find afeasible schedule

» Cannot distinguisinfeasible task set from failure to
find a feasible schedule

0 More of atheoretical than a practical problem
» Off-line schedule search task can run foorg time

Lecture 9

Page 46




CSCE 455/855
Steve Goddard

Explicit Plan Scheduling

0 Spring system at Umass-Amherst
» Used explicit plan scheduling
0 Task precedence relations
0 Resource use (shared, exclusive)
0 Explicit delay
o Communication relations
0 Computations written as groups of interacting
processes
» Scheduled as sets of tasks with known WCET, resource
use, precedence and communication relations
» Compiler extensively analyzed process representation
during compilation and constructed a task representation
of the processxecution time behavior

a7

Lecture9

Page 47

Explicit Plan Scheduling

0 Less popular for no clear reason
» Strength of CMU and SEI reputation and advocacy of RM
» Lure of mathematical analysis and optimality
0 Largely illusory
0 Considerable duality in these methods

» RM analysis effectively constructs a “worst case”
execution plan

» The task set is thus feasible even in the worst case
» Texas Instruments then used this as an explicit schedule
0 All explicit schedul es satisfying execution constraints
are solutions to the scheduling problem - regardless
of source

Lecture 9

Page 48




CSCE 455/855
Steve Goddard

Periodicity and Guarantees

0 Mathematically based methods (RMS) are often
popular because of perceived reliability and
optimality

» Often optimal in that they succeed if any method
succeedsyot that they have the best CPU utilization

0 All methods are based on behavioral assumptions

» WCET

» Period

» Resource use

» Communication patterns

Lecture9

Page 49

CSCE 455/855
Steve Goddard

Periodicity and Guarantees

0 Customers, and designers, often want to combine
issues
» Guarantee and best effort
0 Priority driven scheduling is attractive because it is
familiar and because the highest priority task is
awaysrun

» BUT: the guarantee of system correctness is based on a
assumption about every process being periodic

» Fairness and minimizing response tiane not relevant

» Executing every task according to the periodic
assumptionsnust be OK or the analysis is bogus

Lecture 9

Page 50




CSCE 455/855
Steve Goddard

Periodicity and Guarantees

0 Many developers simplify their problem by
providing periodic serversfor all events
» Then executing then according to a specific plan
» Minimize aperiodic ISR execution time

0 This approach must be OK or everything is
nonsense

Lecture9

Page 51

CSCE 455/855
Steve Goddard

L anguage and Compiler
Support

0 All approachesto RT scheduling assume non-
trivia information about tasks is available
» WCET
» Resource use
» Precedence relations
» Various attributes depending on scheduling method
0 None of thisinformation is known or used a priori
by conventional systems

Lecture 9

Page 52




CSCE 455/855
Steve Goddard

L anguage and Compiler
Support

0 Language and compiler support are required to
enable the compiler to provide required
information about task behavior and to have that
information bereliable

» Reliable execution behavior predictions

0 AsRT constraints become more and more
important to awider range of applicationsthe
ability to express time and behavior constraints
and to make predictions will become more and
more important

Lecture9

Page 53

CSCE 455/855
Steve Goddard

L anguage and Compiler
Support

0 RT semantics are creeping into many applications
without the developers or usersrealizing the
implications

0 CORBA researchers and developers are
considering applications with RT constraints

» Adding behavioral assertions and constraints to the IDL

0 Opportunity because RT islikely to become
important “suddenly” from the point of view of
many industry segments and types of users

» Those positioned to help will benefit greatly

Lecture 9

Page 54




CSCE 455/855
Steve Goddard

Network Support

0 Real-time applications are increasingly distributed
» Distributed applications exhibit RT constraints with
increasing frequency
0 Network support is a component of distributed computations
» Predictability of network behavior thus affects the
predictability of computation behavior
0 Networks are traditionally designed to reduce cost through
» Statistical multiplexing
» Probabilistic resource allocation paradigm conflict

0 Significant source of difficulty

O providers are having figuring out how to support new services
economically

Lecture9

Page 55

CSCE 455/855
Steve Goddard

Real-Time Communication

0 Different from communication in other distributed
systems
0 High performanceis nice, but predictability and
determinism are required!
» Ethernet does not provide a known upper bound on
transmission time.
» Token ring and Time Division Multiple Access
(TDMA) protocols do.

Lecture 9

Page 56




CSCE 455/855
Steve Goddard

Real-Time Communication

0 Communication protocols are often very different
from other distributed systems.
» QoS specification is common
» Time-Triggered Protocol (TTP)
0 Unusual propertiesof TTP
» detection of a lost packet implies failed sender
» CRC on the packet plus global state
» automatic group communication membership protocol
» the way clock synchronization is achieved

Lecture9

Page 57

CSCE 455/855
Steve Goddard

Real-Time Communication
Time-Triggered Protocol

0 Used in MARS real-time system
» consists of a single layer that handles
0 end-to-end data transport,
0 clock synchronization, and
0 membership management.
0 All nodes are connected by two reliable and
independent TDMA broadcast networks

0 All packets are sent on both networksin parallel

0 Expected loss rateis one packet every 30 million
years!

Lecture 9

Page 58




CSCE 455/855
Steve Goddard

Current Trends

0 Time constraints are emerging in more and more areas
» Not from specialized to general computations
» But from general applications to real-time

o Distribution is becoming more and more common

0 COTS hardware is developing such a dominant
price/performance ration that it may dominate
» wearables.stanford.edu
» Matchbox size 66 MHz 486 w/16 MB
» KU Real-Time modifications to Linux

0 Distributed virtual environments and multimedia may be
sufficient to drive networks toward RT - maybe not

Lecture9

Page 59

CSCE 455/855
Steve Goddard

Emerging Applications

0 Time constrained transaction systems
0 Multimedia
» On-demand video/audio
» Multi-media conferencing (harder because of lower
latency constraint)» Games
0 Smart appliances
0 Complex distributed control
» Houses, Cars
» Traffic control
0 Cars, Trains, Ships, Planes, Elevators - turbo lifts
» Aegis Cruisers

Lecture 9

Page 60




