
RAIK 284H, Spring 2010
Optimizing the Performance of a Pipelined Processor

Assigned: Thurs Mar 4, Due: Thurs Mar 11, Mar 25, Apr 1,
9:00PM

Dylan Douglas (d.dylan.douglas@gmail.com) is the lead person for this assignment.

1 Introduction

In this lab, you will learn about the design and implementation of a pipelined Y86 processor, optimizing its
performance on a benchmark program. You are allowed to make any semantics preserving transformations
to the benchmark program, or to make enhancements to the pipelined processor, or both. When you have
completed the lab, you will have a keen appreciation for the interactions between code and hardware that
affect the performance of your programs.

The lab is organized into three parts, each with its own handin. In Part A you will write some simple Y86
programs and become familiar with the Y86 tools. In Part B, you will extend the SEQ simulator with two
new instructions. These two parts will prepare you for Part C, the heart of the lab, where you will optimize
the Y86 benchmark program and the processor design.

2 Logistics

You will work on this lab alone.

Any clarifications and revisions to the assignment will be posted on the course Web page.

3 Handout Instructions

1. Start by copying the file archlab-handout.tar (available on the course Web page) to a (pro-
tected) directory on osage.unl.edu in which you plan to do your work.

2. Then give the command: tar xvf archlab-handout.tar. This will cause the following files
to be unpacked into the directory: README, Makefile, sim.tar, HW4.pdf, and simguide.pdf.

1

3. Next, give the command tar xvf sim.tar. This will create the directory sim, which contains
your personal copy of the Y86 tools. You will be doing all of your work inside this directory.

4. Finally, change to the sim directory and build the Y86 tools:

unix> cd sim
unix> make clean; make

4 Part A

You will be working in directory sim/misc in this part.

Your task is to write and simulate the following three Y86 programs. The required behavior of these pro-
grams is defined by the example C functions in examples.c. Be sure to put your name and ID in a
comment at the beginning of each program.

sum.ys: Iteratively sum linked list elements

Write a Y86 program (sum.ys) that iteratively sums the elements of a linked list. Your program should
consist of a main routine that invokes a Y86 function (sum list) that is functionally equivalent to the C
sum list function in Figure 1. Test your program using the following three-element list:

Sample linked list
.align 4
ele1:

.long 0x00a

.long ele2
ele2:

.long 0x0b0

.long ele3
ele3:

.long 0xc00

.long 0

rsum.ys: Recursively sum linked list elements

Write a recursive version of sum.ys (rsum.ys) that recursively sums the elements of a linked list.

Your program should consist of a main routine that invokes a recursive Y86 function (rsum list) that is
functionally equivalent to the rsum list function in Figure 1. Test your program using the same three-
element list you used for testing list.ys.

2

1 /* linked list element */
2 typedef struct ELE {
3 int val;
4 struct ELE *next;
5 } *list_ptr;
6

7 /* sum_list - Sum the elements of a linked list */
8 int sum_list(list_ptr ls)
9 {
10 int val = 0;
11 while (ls) {
12 val += ls->val;
13 ls = ls->next;
14 }
15 return val;
16 }
17

18 /* rsum_list - Recursive version of sum_list */
19 int rsum_list(list_ptr ls)
20 {
21 if (!ls)
22 return 0;
23 else {
24 int val = ls->val;
25 int rest = rsum_list(ls->next);
26 return val + rest;
27 }
28 }
29

30 /* copy_block - Copy src to dest and return xor checksum of src */
31 int copy_block(int *src, int *dest, int len)
32 {
33 int result = 0;
34 while (len > 0) {
35 int val = *src++;
36 *dest++ = val;
37 result ˆ= val;
38 len--;
39 }
40 return result;
41 }

Figure 1: C versions of the Y86 solution functions. See sim/misc/examples.c

3

copy.ys: Copy a source block to a destination block

Write a program (copy.ys) that copies a block of words from one part of memory to another (non-
overlapping area) area of memory, computing the checksum (Xor) of all the words copied.

Your program should consist of a main routine that calls a Y86 function (copy block) that is functionally
equivalent to the copy block function in Figure 1. Test your program using the following three-element
source and destination blocks:

.align 4
Source block
src:

.long 0x00a

.long 0x0b0

.long 0xc00

Destination block
dest:

.long 0x111

.long 0x222

.long 0x333

5 Part B

You will be working in directory sim/seq in this part.

Your task in Part B is to extend the SEQ processor to support two new instructions: iaddl (described
in homework problems 4.32 and 4.34) and leave (described in homework problems 4.33 and 4.35). To
add these instructions, you will modify the file seq-full.hcl, which implements the version of SEQ
described in the CS:APP textbook. In addition, it contains declarations of some constants that you will need
for your solution.

Your HCL file must begin with a header comment containing the following information:

• Your name and CSE/osage login name.

• A description of the computations required for the iaddl instruction. Use the descriptions of
irmovl and OPl in Figure 4.16 in the CS:APP text as a guide.

• A description of the computations required for the leave instruction. Use the description of popl
in Figure 4.18 in the CS:APP text as a guide.

Building and Testing Your Solution

Once you have finished modifying the seq-full.hcl file, then you will need to build a new instance of
the SEQ simulator (ssim) based on this HCL file, and then test it:

4

• Building a new simulator. You can use make to build a new SEQ simulator:

unix> make VERSION=full

This builds a version of ssim that uses the control login you specified in seq-full.hcl. To save
typing, you can assign VERSION=full in the Makefile.

• Testing your solution on a simple Y86 program. For your initial testing, we recommend running a
simple program such as asum.yo in TTY mode, comparing the results against the ISA simulation:

unix> ./ssim -t asum.yo

If the ISA test fails, then you should debug your implementation by single stepping the simulator in
GUI mode:

unix> ./ssim -g asum.yo

• Testing your solution using the benchmark programs. Once your simulator is able to correctly
execute small programs, then you can automatically test it on the Y86 benchmark programs in
../y86-code:

unix> (cd ../y86-code; make testssim)

This will run ssim on the benchmark programs and check for correctness by comparing the resulting
processor state with the state from a high-level ISA simulation. See file ../y86-code/README
file for more details.

• Performing regression tests. Once you can execute the benchmark programs correctly, then you
should run the extensive set of regression tests in ../ptest. To test everything except iaddl
and leave:

unix> (cd ../ptest; make SIM=../seq/ssim)

To test your implementation of iaddl:

unix> (cd ../ptest; make SIM=../seq/ssim TFLAGS=-i)

To test your implementation of leave:

unix> (cd ../ptest; make SIM=../seq/ssim TFLAGS=-l)

To test both iaddl and leave:

unix> (cd ../ptest; make SIM=../seq/ssim TFLAGS=-il)

For more information on the SEQ simulator refer to the handout CS:APP Guide to Y86 Processor Simulators
(simguide.pdf).

5

1 /*
2 * ncopy - copy src to dst, returning number of positive ints
3 * contained in src array.
4 */
5 int ncopy(int *src, int *dst, int len)
6 {
7 int count = 0;
8 int val;
9

10 while (len > 0) {
11 val = *src++;
12 *dst++ = val;
13 if (val > 0)
14 count++;
15 len--;
16 }
17 return count;
18 }

Figure 2: C version of the ncopy function. See sim/pipe/ncopy.c.

6 Part C

You will be working in directory sim/pipe in this part.

The ncopy function in Figure 2 copies a len-element integer array src to a non-overlapping dst, return-
ing a count of the number of positive integers contained in src. Figure 3 shows the baseline Y86 version
of ncopy. The file pipe-full.hcl contains a copy of the HCL code for PIPE, along with a declaration
of the constant value IIADDL.

Your task in Part C is to modify ncopy.ys and pipe-full.hcl with the goal of making ncopy.ys
run as fast as possible.

You will be handing in two files: pipe-full.hcl and ncopy.ys. Each file should begin with a header
comment with the following information:

• Your name and CSE/osage login name.

• A high-level description of your code. In each case, describe how and why you modified your code.

Coding Rules

You are free to make any modifications you wish, with the following constraints:

• Your ncopy.ys function must work for arbitrary array sizes. You might be tempted to hardwire
your solution for 64-element arrays by simply coding 64 copy instructions, but this would be a bad
idea because we will be grading your solution based on its performance on arbitrary arrays.

6

1 ##
2 # ncopy.ys - Copy a src block of len ints to dst.
3 # Return the number of positive ints (>0) contained in src.
4 #
5 # Include your name and ID here.
6 #
7 # Describe how and why you modified the baseline code.
8 #
9 ##
10 # Function prologue. Do not modify.
11 ncopy: pushl %ebp # Save old frame pointer
12 rrmovl %esp,%ebp # Set up new frame pointer
13 pushl %esi # Save callee-save regs
14 pushl %ebx
15 mrmovl 8(%ebp),%ebx # src
16 mrmovl 12(%ebp),%ecx # dst
17 mrmovl 16(%ebp),%edx # len
18

19 # Loop header
20 xorl %esi,%esi # count = 0;
21 andl %edx,%edx # len <= 0?
22 jle Done # if so, goto Done:
23

24 # Loop body.
25 Loop: mrmovl (%ebx), %eax # read val from src...
26 rmmovl %eax, (%ecx) # ...and store it to dst
27 andl %eax, %eax # val <= 0?
28 jle Npos # if so, goto Npos:
29 irmovl $1, %edi
30 addl %edi, %esi # count++
31 Npos: irmovl $1, %edi
32 subl %edi, %edx # len--
33 irmovl $4, %edi
34 addl %edi, %ebx # src++
35 addl %edi, %ecx # dst++
36 andl %edx,%edx # len > 0?
37 jg Loop # if so, goto Loop:
38

39 # Function epilogue. Do not modify.
40 Done: rrmovl %esi, %eax
41 popl %ebx
42 popl %esi
43 rrmovl %ebp, %esp
44 popl %ebp
45 ret

Figure 3: Baseline Y86 version of the ncopy function. See sim/pipe/ncopy.ys.

7

• Your ncopy.ys function must run correctly with YIS. By correctly, we mean that it must correctly
copy the src block and return (in %eax) the correct number of positive integers.

• Your pipe-full.hcl implementation must pass the regression tests in ../y86-code and ../ptest
(without the -il flags that test iaddl and leave).

Other than that, you are free to implement the iaddl instruction if you think that will help. You are free to
alter the branch prediction behavior or to implement techniques such as load bypassing. You may make any
semantics preserving transformations to the ncopy.ys function, such as swapping instructions, replacing
groups of instructions with single instructions, deleting some instructions, and adding other instructions.

Building and Running Your Solution

In order to test your solution, you will need to build a driver program that calls your ncopy function. We
have provided you with the gen-driver.pl program that generates a driver program for arbitrary sized
input arrays. For example, typing

unix> make drivers

will construct the following two useful driver programs:

• sdriver.yo: A small driver program that tests an ncopy function on small arrays with 4 elements.
If your solution is correct, then this program will halt with a value of 3 in register %eax after copying
the src array.

• ldriver.yo: A large driver program that tests an ncopy function on larger arrays with 63 ele-
ments. If your solution is correct, then this program will halt with a value of 62 (0x3e) in register
%eax after copying the src array.

Each time you modify your ncopy.ys program, you can rebuild the driver programs by typing

unix> make drivers

Each time your modify your pipe-full.hcl file, you can rebuild the simulator by typing

unix> make psim

If you want to rebuild the simulator and the driver programs, type

unix> make

To test your solution in GUI mode on a small 4-element array, type

unix> ./psim -g sdriver.yo

8

To test your solution on a larger 63-element array, type

unix> ./psim -g ldriver.yo

Once your simulator correctly runs your version of ncopy.ys on these two block lengths, you will want
to perform the following additional tests:

• Testing your driver files on the ISA simulator. Make sure that your ncopy.ys function works prop-
erly with YIS:

unix> cd sim/pipe
unix> make
unix> ../misc/yis sdriver.yo

• Testing your code on a range of block lengths with the ISA simulator. The Perl script correctness.pl
generates driver files with block lengths from 1 up to some limit (default 64), simulates them with
YIS, and checks the results. It generates a report showing the status for each block length:

unix> ./correctness.pl

If you get incorrect results for some length K, you can generate a driver file for that length that
includes checking code:

unix> ./gen-driver.pl -n K -c > driver.ys
unix> make driver.yo
unix> ../misc/yis driver.yo

The program will end with register %eax having value 0xaaaa if the correctness check passes,
0xeeee if the count is wrong, and 0xffff if the count is correct, but the words are not all copied
correctly.

• Testing your simulator on the benchmark programs. Once your simulator is able to correctly exe-
cute sdriver.ys and ldriver.ys, you should test it against the Y86 benchmark programs in
../y86-code:

unix> (cd ../y86-code; make testpsim)

This will run psim on the benchmark programs and compare results with YIS.

• Testing your simulator with extensive regression tests. Once you can execute the benchmark programs
correctly, then you should check it with the regression tests in ../ptest. For example, if your
solution implements the iaddl instruction, then

unix> (cd ../ptest; make SIM=../pipe/psim TFLAGS=-i)

7 Evaluation

The lab is worth 190 points: 30 points for Part A, 60 points for Part B, and 100 points for Part C.

9

Part A

Part A is worth 30 points, 10 points for each Y86 solution program. Each solution program will be evaluated
for correctness, including proper handling of the %ebp stack frame register and functional equivalence with
the example C functions in examples.c.

The programs sum.ys and rsum.yswill be considered correct if their respective sum list and rsum list
functions return the sum 0xcba in register %eax.

The program copy.ys will be considered correct if its copy block function returns the sum 0xcba in
register %eax, and copies the three words 0x00a, 0x0b, and 0xc to the 12 contiguous memory locations
beginning at address dest.

Part B

This part of the lab is worth 60 points:

• 10 points for your description of the computations required for the iaddl instruction.

• 10 points for your description of the computations required for the leave instruction.

• 10 points for passing the benchmark regression tests in y86-code, to verify that your simulator still
correctly executes the benchmark suite.

• 15 points for passing the regression tests in ptest for iaddl.

• 15 points for passing the regression tests in ptest for leave.

Part C

This part of the Lab is worth 100 points:

• 20 points each for your descriptions in the headers of ncopy.ys and pipe-full.hcl.

• 60 points for performance. To receive credit here, your solution must be correct, as defined earlier.
That is, ncopy runs correctly with YIS, and pipe-full.hcl passes all tests in y86-code and
ptest.

We will express the performance of your function in units of cycles per element (CPE). That is, if the
simulated code requires C cycles to copy a block of N elements, then the CPE is C/N . The PIPE
simulator display the total number of cycles required to complete the program. The baseline version
of the ncopy function running on the standard PIPE simulator with a large 63-element array requires
1039 cycles to copy 63 elements, for a CPE of 1039/63 = 16.49.

Since some cycles are used to set up the call to ncopy and to set up the loop within ncopy, you
will find that you will get different values of the CPE for different block lengths (generally the CPE
will drop as N increases). We will therefore evaluate the performance of your function by computing
the average of the CPEs for blocks ranging from 1 to 64 elements. You can use the Perl script

10

benchmark.pl in the pipe directory to run simulations of your ncopy.ys code over a range of
block lengths and compute the average CPE. Simply run the command

unix> ./benchmark.pl

to see what happens. For example, the baseline version of the ncopy function has CPE values ranging
between 45.0 and 16.45, with an average of 18.15. Note that this Perl script does not check for the
correctness of the answer. Use the script correctness.pl for this.

You should be able to achieve an average CPE of less than 12.0. Our best version averages 6.47. Your
performance points will be computed as 660/CPE, so there is plenty opportunity for extra credit.

By default, benchmark.pl and correctness.pl compile and test ncopy.ys. Use the -f
argument to specify a different file name. The -h flag gives a complete list of the command line
arguments.

8 Handin Instructions

• There will be 3 separate handin sections on the course Web handin page. Part A will be due Thursday,
March 11. Part B will be due Thursday, March 25. Part C will be due Thursday, April 1. Do not wait
too long before starting parts B and C, as they take longer than you expect.

• You will be handing the following files in each section of the assignment:

– Part A: sum.ys, rsum.ys, and copy.ys.

– Part B: seq-full.hcl.

– Part C: ncopy.ys and pipe-full.hcl.

• Make sure you have included your name and CSE/cree login name in a comment at the top of each of
your handin files.

9 Hints

• By design, both sdriver.yo and ldriver.yo are small enough to debug with in GUI mode. We
find it easiest to debug in GUI mode, and suggest that you use it.

• If you running in GUI mode on a Unix box, make sure that you have initialized the DISPLAY envi-
ronment variable. If you connect via the ssh protocol (e.g. with PuTTY) and enable X11 forwarding,
this will happen automatically. Instructions for setting up X11 are at
http://cse.unl.edu/˜raik284h/hw/x11.html

• With some X servers, the “Program Code” window begins life as a closed icon when you run psim
or ssim in GUI mode. Simply click on the icon to expand the window.

• With some Microsoft Windows-based X servers, the “Memory Contents” window will not automati-
cally resize itself. You’ll need to resize the window by hand.

11

• The psim and ssim simulators terminate with a segmentation fault if you ask them to execute a file
that is not a valid Y86 object file.

• When running in GUI mode, the psim and ssim simulators will single-step past a halt instruction.

12

