
Page 1

Processor Architecture I:
Y86 Instruction Set Architecture

Dr. Steve Goddard
goddard@cse.unl.edu

JDEP 284H
Foundations of Computer Systems

http://cse.unl.edu/~goddard/Courses/JDEP284

2

Giving credit where credit is due
Most of slides for this lecture are based on
slides created by Dr. Bryant, Carnegie
Mellon University.
I have modified them and added new
slides.

3

Chapter Outline
BackgroundBackground

Instruction sets
Logic design

Sequential ImplementationSequential Implementation
A simple, but not very fast processor design

PipeliningPipelining
Get more things running simultaneously

Pipelined ImplementationPipelined Implementation
Make it work

4

Coverage
The ApproachThe Approach

Work through designs for particular instruction set
Y86---a simplified version of the Intel IA32 (a.k.a. x86).
If you know one, you more-or-less know them all

Work at “microarchitectural” level
Assemble basic hardware blocks into overall processor
structure

» Memories, functional units, etc.
Surround with control logic to make sure each instruction flows
through properly

Use simple hardware description language to describe
control logic

Can extend and modify
Test via simulation

5

Topics

Y86 ISA
CISC vs. RISC
High-level overview of MIPS ISA

6

Instruction Set Architecture
Assembly Language ViewAssembly Language View

Processor state
Registers, memory, …

Instructions
addl, movl, leal, …
How instructions are encoded
as bytes

Layer of AbstractionLayer of Abstraction
Above: how to program machine

Processor executes instructions
in a sequence

Below: what needs to be built
Use variety of tricks to make it
run fast
E.g., execute multiple
instructions simultaneously

ISA

Compiler OS

CPU
Design

Circuit
Design

Chip
Layout

Application
Program

Page 2

7

%eax
%ecx
%edx
%ebx

%esi
%edi
%esp
%ebp

Y86 Processor State

Program Registers
Same 8 as with IA32. Each 32 bits

Condition Codes
Single-bit flags set by arithmetic or logical instructions

» OF: Overflow ZF: Zero SF:Negative
Program Counter

Indicates address of instruction
Memory

Byte-addressable storage array
Words stored in little-endian byte order

Program
registers Condition

codes

PC

Memory

OF ZF SF

8

Y86 Instructions
FormatFormat

1--6 bytes of information read from memory
Can determine instruction length from first byte
Not as many instruction types, and simpler encoding
than with IA32

Each accesses and modifies some part(s) of the
program state

9

Encoding Registers
Each register has 4Each register has 4--bit IDbit ID

Same encoding as in IA32

Register ID 8 indicates “no register”Register ID 8 indicates “no register”
Will use this in our hardware design in multiple places

%eax
%ecx
%edx
%ebx

%esi
%edi
%esp
%ebp

0
1
2
3

6
7
4
5

10

Instruction Example
Addition InstructionAddition Instruction

addl rA, rB 6 0 rA rB

Encoded Representation

Generic Form

Add value in register rA to that in register rB
Store result in register rB
Note that Y86 only allows addition to be applied to
register data

Set condition codes based on result
Two-byte encoding

First indicates instruction type
Second gives source and destination registers

e.g., addl %eax,%esi Encoding: 60 06

11

Arithmetic and Logical Operations
Refer to generically as
“OPl”
Encodings differ only
by “function code”

Low-order 4 bytes in
first instruction word

Set condition codes as
side effect

addl rA, rB 6 0 rA rB

subl rA, rB 6 1 rA rB

andl rA, rB 6 2 rA rB

xorl rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code

12

Move Operations

Like the IA32 movl instruction
Simpler format for memory addresses
Give different names to keep them distinct

rrmovl rA, rB 2 0 rA rB Register --> Register

Immediate --> Register
irmovl V, rB 3 0 8 rB V

Register --> Memory
rmmovl rA, D(rB) 4 0 rA rB D

Memory --> Register
mrmovl D(rB), rA 5 0 rA rB D

Page 3

13

Move Instruction Examples

irmovl $0xabcd, %edxmovl $0xabcd, %edx 30 82 cd ab 00 00

IA32 Y86 Encoding

rrmovl %esp, %ebxmovl %esp, %ebx 20 43

mrmovl -12(%ebp),%ecxmovl -12(%ebp),%ecx 50 15 f4 ff ff ff

rmmovl %esi,0x41c(%esp)movl %esi,0x41c(%esp)

—movl $0xabcd, (%eax)

—movl %eax, 12(%eax,%edx)

—movl (%ebp,%eax,4),%ecx

40 64 1c 04 00 00

14

Jump Instructions
Refer to generically as
“jXX”
Encodings differ only
by “function code”
Based on values of
condition codes
Same as IA32
counterparts
Encode full destination
address

Unlike PC-relative
addressing seen in IA32

jmp Dest 7 0

Jump Unconditionally

Dest

jle Dest 7 1

Jump When Less or Equal

Dest

jl Dest 7 2

Jump When Less

Dest

je Dest 7 3

Jump When Equal

Dest

jne Dest 7 4

Jump When Not Equal

Dest

jge Dest 7 5

Jump When Greater or Equal

Dest

jg Dest 7 6

Jump When Greater

Dest

15

Y86 Program Stack
Region of memory holding
program data
Used in Y86 (and IA32) for
supporting procedure calls
Stack top indicated by %esp

Address of top stack element
Stack grows toward lower
addresses

Top element is at highest
address in the stack
When pushing, must first
decrement stack pointer
When popping, increment stack
pointer

%esp

•

•

•

Increasing
Addresses

Stack “Top”

Stack
“Bottom”

16

Stack Operations

Decrement %esp by 4
Store word from rA to memory at %esp
Like IA32

Read word from memory at %esp
Save in rA
Increment %esp by 4
Like IA32

pushl rA a 0 rA 8

popl rA b 0 rA 8

17

Subroutine Call and Return

Push address of next instruction onto stack
Start executing instructions at Dest
Like IA32

Pop value from stack
Use as address for next instruction
Like IA32

call Dest 8 0 Dest

ret 9 0

18

Miscellaneous Instructions

Don’t do anything

Stop executing instructions
IA32 has comparable instruction, but can’t execute it in
user mode
We will use it to stop the simulator

nop 0 0

halt 1 0

Page 4

19

Writing Y86 Code
Try to Use C Compiler as Much as PossibleTry to Use C Compiler as Much as Possible

Write code in C
Compile for IA32 with gcc -S

Transliterate into Y86

Coding ExampleCoding Example
Find number of elements in null-terminated list
int len1(int a[]);

5043

6125

7395

0

a

⇒ 3

20

Y86 Code Generation Example
First TryFirst Try

Write typical array code

Compile with gcc -O2 -S

ProblemProblem
Hard to do array indexing on
Y86

Since don’t have scaled
addressing modes/* Find number of elements in

null-terminated list */
int len1(int a[])
{

int len;
for (len = 0; a[len]; len++)

;
return len;

}

L18:
incl %eax
cmpl $0,(%edx,%eax,4)
jne L18

21

Y86 Code Generation Example #2
Second TrySecond Try

Write with pointer code

Compile with gcc -O2 -S

ResultResult
Don’t need to do indexed
addressing

/* Find number of elements in
null-terminated list */

int len2(int a[])
{

int len = 0;
while (*a++)

len++;
return len;

}

L24:
movl (%edx),%eax
incl %ecx

L26:
addl $4,%edx
testl %eax,%eax
jne L24

22

Y86 Code Generation Example #3
IA32 CodeIA32 Code

Setup
Y86 CodeY86 Code

Setup

len2:
pushl %ebp
xorl %ecx,%ecx
movl %esp,%ebp
movl 8(%ebp),%edx
movl (%edx),%eax
jmp L26

len2:
pushl %ebp # Save %ebp
xorl %ecx,%ecx # len = 0
rrmovl %esp,%ebp # Set frame
mrmovl 8(%ebp),%edx# Get a
mrmovl (%edx),%eax # Get *a
jmp L26 # Goto entry

23

Y86 Code Generation Example #4
IA32 CodeIA32 Code

Loop + Finish
Y86 CodeY86 Code

Loop + Finish

L24:
movl (%edx),%eax
incl %ecx

L26:
addl $4,%edx

testl %eax,%eax
jne L24
movl %ebp,%esp
movl %ecx,%eax
popl %ebp
ret

L24:
mrmovl (%edx),%eax # Get *a
irmovl $1,%esi
addl %esi,%ecx # len++

L26: # Entry:
irmovl $4,%esi
addl %esi,%edx # a++
andl %eax,%eax # *a == 0?
jne L24 # No--Loop
rrmovl %ebp,%esp # Pop
rrmovl %ecx,%eax # Rtn len
popl %ebp
ret

24

Y86 Program Structure
Program starts at
address 0
Must set up stack

Make sure don’t
overwrite code!

Must initialize data
Can use symbolic
names

irmovl Stack,%esp # Set up stack
rrmovl %esp,%ebp # Set up frame
irmovl List,%edx
pushl %edx # Push argument
call len2 # Call Function
halt # Halt

.align 4
List: # List of elements

.long 5043

.long 6125

.long 7395

.long 0

Function
len2:

. . .

Allocate space for stack
.pos 0x100
Stack:

Page 5

25

Assembling Y86 Program

Generates “object code” file eg.yo
Actually looks like disassembler output

unix> yas eg.ys

0x000: 308400010000 | irmovl Stack,%esp # Set up stack
0x006: 2045 | rrmovl %esp,%ebp # Set up frame
0x008: 308218000000 | irmovl List,%edx
0x00e: a028 | pushl %edx # Push argument
0x010: 8028000000 | call len2 # Call Function
0x015: 10 | halt # Halt
0x018: | .align 4
0x018: | List: # List of elements
0x018: b3130000 | .long 5043
0x01c: ed170000 | .long 6125
0x020: e31c0000 | .long 7395
0x024: 00000000 | .long 0

26

Simulating Y86 Program

Instruction set simulator
Computes effect of each instruction on processor state
Prints changes in state from original

unix> yis eg.yo

Stopped in 41 steps at PC = 0x16. Exception 'HLT', CC Z=1 S=0 O=0
Changes to registers:
%eax: 0x00000000 0x00000003
%ecx: 0x00000000 0x00000003
%edx: 0x00000000 0x00000028
%esp: 0x00000000 0x000000fc
%ebp: 0x00000000 0x00000100
%esi: 0x00000000 0x00000004

Changes to memory:
0x00f4: 0x00000000 0x00000100
0x00f8: 0x00000000 0x00000015
0x00fc: 0x00000000 0x00000018

27

CISC Instruction Sets
Complex Instruction Set Computer
Dominant style through mid-80’s

StackStack--oriented instruction setoriented instruction set
Use stack to pass arguments, save program counter
Explicit push and pop instructions

Arithmetic instructions can access memoryArithmetic instructions can access memory
addl %eax, 12(%ebx,%ecx,4)

requires memory read and write
Complex address calculation

Condition codesCondition codes
Set as side effect of arithmetic and logical instructions

PhilosophyPhilosophy
Add instructions to perform “typical” programming tasks

28

RISC Instruction Sets
Reduced Instruction Set Computer
Internal project at IBM, later popularized by Hennessy
(Stanford) and Patterson (Berkeley)

Fewer, simpler instructionsFewer, simpler instructions
Might take more to get given task done
Can execute them with small and fast hardware

RegisterRegister--oriented instruction setoriented instruction set
Many more (typically 32) registers
Use for arguments, return pointer, temporaries

Only load and store instructions can access memoryOnly load and store instructions can access memory
Similar to Y86 mrmovl and rmmovl

No Condition codesNo Condition codes
Test instructions return 0/1 in register

29

MIPS Registers

$0

$1

$2

$3

$4

$5

$6

$7

$8

$9

$10

$11

$12

$13

$14

$15

$0

$at

$v0

$v1

$a0

$a1

$a2

$a3

$t0

$t1

$t2

$t3

$t4

$t5

$t6

$t7

Constant 0
Reserved Temp.

Return Values

Procedure arguments

Caller Save
Temporaries:
May be overwritten by
called procedures

$16

$17

$18

$19

$20

$21

$22

$23

$24

$25

$26

$27

$28

$29

$30

$31

$s0

$s1

$s2

$s3

$s4

$s5

$s6

$s7

$t8

$t9

$k0

$k1

$gp

$sp

$s8

$ra

Reserved for
Operating Sys

Caller Save Temp

Global Pointer

Callee Save
Temporaries:
May not be
overwritten by
called procedures

Stack Pointer
Callee Save Temp
Return Address

30

MIPS Instruction Examples

Op Ra Rb Offset

Op Ra Rb Rd Fn00000
R-R

Op Ra Rb Immediate
R-I

Load/Store

addu $3,$2,$1 # Register add: $3 = $2+$1

addu $3,$2, 3145 # Immediate add: $3 = $2+3145

sll $3,$2,2 # Shift left: $3 = $2 << 2

lw $3,16($2) # Load Word: $3 = M[$2+16]

sw $3,16($2) # Store Word: M[$2+16] = $3

Op Ra Rb Offset
Branch

beq $3,$2,dest # Branch when $3 = $2

Page 6

31

CISC vs. RISC
Original DebateOriginal Debate

Strong opinions!
CISC proponents---easy for compiler, fewer code bytes
RISC proponents---better for optimizing compilers, can make
run fast with simple chip design

Current StatusCurrent Status
For desktop processors, choice of ISA not a technical issue

With enough hardware, can make anything run fast
Code compatibility more important

For embedded processors, RISC makes sense
Smaller, cheaper, less power

32

Summary
Y86 Instruction Set ArchitectureY86 Instruction Set Architecture

Similar state and instructions as IA32
Simpler encodings
Somewhere between CISC and RISC

How Important is ISA Design?How Important is ISA Design?
Less now than before

With enough hardware, can make almost anything go fast
Intel is moving away from IA32

Does not allow enough parallel execution
Introduced IA64

» 64-bit word sizes (overcome address space limitations)
» Radically different style of instruction set with explicit

parallelism
» Requires sophisticated compilers

