JDEP 284H
Foundations of Computer Systems

Processor Architecture V:
Making the Pipelined
Implementation Work

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/JDEP284

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Dr. Bryant, Carnegie
Mellon University.

m| have modified them and added new
slides.

Overview

Make the pipelined processor work!

Data Hazards

= Instruction having register R as source follows shortly after
instruction having register R as destination

= Common condition, don’t want to slow down pipeline

Control Hazards

= Mispredict conditional branch
@ Our design predicts all branches as being taken
® Naive pipeline executes two extra instructions
= Getting return address for ret instruction
e Naive pipeline executes three extra instructions

Making Sure It Really Works
= What if multiple special cases happen simultaneously?

ot v

il v w s

Pipeline Stages

Memory

Fetch
= Select current PC
= Read instruction
= Compute incremented PC

Decode

= Read program registers
Execute

= Operate ALU
Memory

= Read or write data memory

Write Back
= Update register file

Feten

Write back

PIPE- Hardware

= Pipeline registers hold
intermediate values
from instruction
execution

Execute

Forward (Upward) Paths
= Values passed from one
stage to next
= Cannot jump past
stages
® e.g., valC passes
through decode

- EE

Decode

Data Dependencies: 2 Nop’s

¥ progi .y [[z[a]a[s[s]7[e]e]nw]
0x000: irmovl $10,%edx ‘ Fl D|E| M| W
0x006: irmovl $3,%eax ‘F D|E| M| W
0x00c: nop F| D| E[| M| W
0x00d: nop FI o]l E[M[w]
0x00e: addl %edx,%eax F{D| E Ml W‘
0x010: halt F| D E‘ M‘ W‘
Cycle 6
w
Rl[seax] <3
D
valA «<R[sedx] = 19/ Error
valB < R[%eax] =0

Page 1

Data Dependencies: No Nop
L=l
[F[o
$3, %eax ‘ F

progd.ys a[s[e]7]s]

0x000: irmovl $10,%edx

0x006: irmovl W
M w]

] w]

0x00c:

nlo|m
m(o|m|Z

o|mZ|s

0x00e: halt

m

Cycle 4

M
M_valE = 10
M_dSIE = sedx

E
e valE «<0+3=3
E_dstE = seax

D

valA < Risead = 07]
valB «R[%eax] = 0

+— Error

Stalling for Data Dependencies

‘1‘2‘3‘4‘5‘6‘7‘B‘Q‘lﬂ‘ll‘

prog2.ys
0x000: irmovl $10,%eax | [F[D[E [M[W
0x006: irmovl $3,%eax ‘ FID|E|M|W
0x00c: nop FID|E[M|W
0x00d: nop FID|E|[M|W
bubble rE[MW
0x00e: addl %edx, yeax ‘ F ‘ DID|E|M W‘
0x010: halt ‘ F|F|D M ‘ W ‘

m If instruction follows too closely after one that writes
register, slow it down

= Hold instruction in decode
= Dynamically inject nop into execute stage

7 8
Wite back
Stall Condition Detecting Stall Condition
. # progz.ys [ifefsfefsefrefs]w]u]
Source Registers 0x000: irmovl 310,%edx | [F [D |E [M|W
m srcA and srcB of current 0x006: irmovl $3,%eax ‘ FID|E|M|W
instruction in decode 0x00c: nop FID|E|M[|wW
stage 0x00d: nop F|ID|E|M|W
. . . Execute| bubble Cl E M| w
Destination Registers 0x00e: 2ddl sedx, teax [Flo|D|E|[m|w]
u dstE and dstM fields 0x010: _halt [F[F]D M w]
= Instructions in execute, Cycle 6
memory, and write-back Decode 4
stages w
X W_StE = %eax
Special Case W_valE =3
= Don't stall for register ID
8 .
o Indicates absence of D
register operand SICA = ¥edx
SICB = $eax
9 10
Stalling X3 What Happens When Stalling?
prosive [ifefsfefs[efrefs]w]u]
0x000: irmovl $10,%edx | [F[D[E [M[W # progd.ys Cycle 8
0x006: irmovl $3,%eax [FlpJE[M]wW B0 el S0,k Write Back bubble
bubble E M W 0x006: irmovl $3,%eax MemOry bubble
bubble E|[M|W Crfbes ekl Seeh, Geee: Execute | 0x00c: addl %edx, $eax
bubble r CE[M[wW 0x00e: halt Decode | 0x00e: halt
0x00c: addl %edx, Yeax ‘ F ‘ D ‘ D|D|D|[E|M|W ‘ Fetch
0x00e: halt [FIFlF[Fl[D[E[M[W]
Cycle 8 = Stalling instruction held back in decode stage
Ccle
Y W = Following instruction stays in fetch stage
Cycle 5 W_dS(E = %eax = Bubbles injected into execute stage
™ o Like dynamically generated nop’s
Cycle 4 M_dStE = %eax . ® Move through later stages
E . :
E_dstE = seax .
D
SICA = $edx SICA = $edx SICA = $edx
SrcB = $eax SrcB = seax SrcB = $eax 11 12

Page 2

Implementing Stalling

w_dsm

v

w_ds

-]

£ dsm
E asE ‘

we [o [e Jsefwn]s]w]

:
DOERES

Pipeline Control
= Combinational logic detects stall condition
= Sets mode signals for how pipeline registers should update
13

Pipeline Register Modes

Data Forwarding

Naive Pipeline
= Register isn’t written until completion of write-back stage
= Source operands read from register file in decode stage
@ Needs to be in register file at start of stage
Observation
= Value generated in execute or memory stage

Trick

= Pass value directly from generating instruction to decode
stage

= Needs to be available at end of decode stage

15

™ W_valE, W_valM, W_dstE, W_dst\

Bypass Paths

Decode Stage

= Forwarding logic
selects valA and valB

= Normally from register
file

= Forwarding: get valA or
valB from later pipeline
stage

E_valA, E_valB,
E_srcA, E_sicB

Forwarding Sources
= Execute: valE
= Memory: valE, valM
= Write back: valE, valM

Write back

17

M Rising m
Input=y| | Output=x = clock. = Output =y
Normal =Dix=> =Dy
stall ?—‘bubme =
=0 =0
I it W Output Rising W Output
nput =y utput = x o clock = utput = x
Stall =D x—> = x—=>
stall bubble a
PR it
wout =TT outout Rising M out
nput =y utput = x o clock = utput = nop
Bubble =D x> =D o>
o)
stall bubble U
O A
14
¥ provive [2fz[s[«[s[ef7[e]o]w]
0x000: imovl s10,%edx | | F| D| E| M| W,
0x006: irmovl $3,seax [Fl o[E[mM[W
0x00c: nop [Fl o[ElmM[w
0x00d:_nop FIDlE[M[wW]
0x00e: addl Sedx, teax FI D[E[mM[wW]
0x010: halt F| o[E[mM[W]
= irmovlin write- Crole6
w
back stage oemd <3
= Destination value in
W pipeline register :
= Forward as valB for)
decode stage SIcA= teax | valA Rlveaxd = 10
SIcB = %eax | valB «W_valE =3
16
’m‘ 12 3 4 5 6 7 8
0x000: irmovl $10,%edx ‘ F | D|IE|M|W
0x006: irmovl $3,%eax ‘ FID|E[M|W
0x00c: addl %edx,%eax Flo|e[m]|[w]
0x00e: halt F|D|E[M | w ‘
Register sedx Cycle 4
m Generated by ALU
during previous cycle 2
M_dStE = %edx
= Forward from memory E_
as valA
. E
Register seax
) E_dStE = %eax
m Value just generated E_l
by ALU =
= Forward from execute
as valB SIcA = Sedx | valA « M_valE = 10
SrcB = %eax | valB « e valE =3
18

.. Implementing

Write back

Forwarding

= Add additional feedback
paths from E, M, and W
pipeline registers into

Execute

decode stage

= Create logic blocks to
select from multiple
sources for valA and valB
in decode stage

Decode

"Register
e

tun waic

"=

Implementing Forwarding

##

asie | s sven [scp

"Register
e

What should be the A value?

int new E valA = [

Use incremented PC

D_icode in { ICALL, IJXX } :
Forward valE from execute

d_srcA == E_dstE : e_valkE;
Forward valM from memory
d_srcA == M _dstM : m_valM;
Forward valE from memory
d_srcA == M _dstE : M valk;
Forward valM from write back
d_srcA == W_dstM : W_valM;
Forward valE from write back
d_srcA == W_dstE : W_valk;
Use value read from register file
1 : d rvala;

D_valP;

*

*

*

*

19
prog5.ys 12 3 4 s 6 7 8 s 1 u
0%000: irmovl $128,%edx [F [D[E [M[W
0x006: irmovl §3,%ecx [Flo[e[m[w
0x00c: rmmovl %$ecx, O0(%edx) F DI E|M[W
0x012: irmovl $10, $ebx F DI E[M|W
0x018: mrmovl 0(%edx),%eax # Load %eax F D E|M|W
0x0le: addl %ebx,%eax # Use %¥eax Flo[E[mM][wW]
0x020: halt F|lDp|E[m[w]
Load-use dependency
Cycle 7 Cycle 8

= Value needed by end of Vi Vi
decode stage in cycle 7 M_dStE = $ebx L M_dStM = %eax

m Value read from memory in M_vale - 10 roval < MO1281 =3
memory stage of cycle 8 .

D
IA < M_valE = 10, Error
ValA « M_valE =
valB « R[seax] = 0‘/
21

Detecting Load/Use Hazard

Execute

EE,"

Condition Trigger

Load/Use Hazard

E_icode in { IMRMOVL, IPOPL } &&
E_dstMin { d_srcA, d_srcB}

23

20
Avoiding Load/Use Hazard
prog5.ys 12 3 4 s 6 7 8 9 10 u 1
0%000: irmovl $128,%edx [F [D|E[M[wW
0x006: irmovl §3,%ecx [Flole[m]w
0x00c: rmmovl %$ecx, 0(%edx) F D E M [w
0x012: irmovl $10,%ebx F|D|E|m[wW
0x018: mrmovl 0(%edx),%eax # Load %eax FID[I[E[M|[W
bubble rl E M [w
0x0le: addl %ebx,%eax # Use %eax [FIo]olE[m]w]
0%020: halt [FIFlolE[m]w]
= Stall using instruction for
Cycle 8
one cycle -
= Can then pick up loaded W_dSE = sebx
value by forwarding from W._vale - 10
memory stage M
M_dstM = %easx
m_valM « M[128] = 3
D
valA « W_valE = 10
valB « m_valM =3 2
Control for Load/Use Hazard
‘ # prog5.ys |:| [T 2]l a[s e[7] 8] o] o] o 22
0x000: irmovl $128,9edx [F[D] E[M[W
0x006: irmovl $3,%dcx [Fl ol E[M[W
0x00c: rmmovl %$ecx, |0 (%edx) FID|E[M| W
0x012: irmovl $10, $gbx FID|E| M| W
0x018: mrmovl 0 (%edd) ,%eax # Load %eax | F| D| E| M| W
bubble PLE[M W
0x0le: addl %ebx,%edx # Use %eax [F[o[D] E w]
0x020: halt [FIFI o E[M[W]
= Stall instructions in fetch
and decode stages
= Inject bubble into execute
stage
Condition F D E M w
Load/Use Hazard stall stall bubble | normal | normal
24

Branch Misprediction Example

prog8.ys with 3 nop’s inserted

0x000: xorl %eax,%eax

0x002: jne t # Not taken

0x007: irmovl $1, %eax # Fall through

0x00d: nop

0x00e: nop

0x00f: nop

0x010: halt

0x011: t: irmovl $3, %edx # Target (Should not execute)
0x017: irmovl $4, %ecx # Should not execute

0x01d: irmovl $5, %edx # Should not execute

= Should only execute first 7 instructions

25

Handling Misprediction
12 3 4 5 6 7 8 9 10

xorl %eax, %eax ‘ F I D|E|[M W‘
jne target # Not taken ‘ F|D|E([M ‘ W ‘
: irmovl $2,%edx # Target F|D

bubble E|M|W
0x017: irmovl $3,%ebx # Target+l F

bubble DIE|M|W
0x007: irmovl $1,%eax # Fall through F|ID|E|[M[W ‘
ox00d: nop F[p[E[mM[w]

Predict branch as taken
m Fetch 2 instructions at target

Cancel when mispredicted
= Detect branch not-taken in execute stage

= On following cycle, replace instructions in execute and
decode by bubbles

= No side effects have occurred yet

26

Detecting Mispredicted Branch

[

ssof o] wed]

Condition Trigger

Mispredicted Branch |E_icode = IJXX & le_Bch

27

Control for Misprediction

progs 1 2 3 4 5 6 7 8 9 10

demo-retb.ys based on prog7.ys

Return Example

0x000: irmovl Stack,%esp # Initialize stack pointer
0x006: call p # Procedure call

0x00b: irmovl $5,%esi # Return point

0x011: halt

0x020: .pos 0x20

0x020: p: irmovl $-1,%edi # procedure

0x026: ret

0x027: irmovl §1,%eax # Should not be executed
0x02d: irmovl $2,%ecx # Should not be executed
0x033: irmovl $3,%edx # Should not be executed
0x039: irmovl $4,%ebx # Should not be executed
0x100: .pos 0x100

0x100: Stack: # Stack: Stack pointer

= Previously executed three additional instructions

29

0x000: xorl %eax, Yeax ‘ F I D|E|M W‘
0x002: jne target # Not taken ‘ F D E|[M ‘ W ‘
0x011: t: irmovl $2,%edx # Target F D
bubble E|M|W
0x017: irmovl $3,%ebx # Target+l F
bubble DIE|M|W
0x007: irmovl $1,%eax # Fall through FID|E[M[wW]
0x00d: nop FID[E[M]|wW]
Condition F D = M w
Mispredicted Branch| normal | bubble | bubble | normal | normal
28
demo-retb
0x026: ret [FI[D[E[M[wW
bubble ‘ F| D| E| M| W
bubble F|D|E[M| W
bubble F|D|E| M W‘
0x00b: irmovl $5,%esi # Return F| Dl E[™ \ W\
m As ret passes through w
pipeline, stall at fetch stage valM = 0x0b
o While in decode, execute, and
memory stage :
= Inject bubble into decode °
stage =
m Release stall when reach valC <5
write-back stage 1B < vesi

30

Page 5

Detecting Return

e [asn

Execute

o=

we [[

Decode

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }

31

Special Control Cases
Detection

Condition Trigger

Processing ret IRET in { D_icode, E_icode, M_icode }

Load/Use Hazard E_icode in { IMRMOVL, IPOPL } &&

E_dstMin { d_srcA, d_srcB }
E_icode = 1IJXX & !le_Bch

Mispredicted Branch

Action (on next cycle)

Condition F D = M w

Processing ret stall bubble | normal | normal | normal
Load/Use Hazard stall stall bubble | normal | normal
Mispredicted Branch| normal | bubble | bubble | normal | normal

Control for Return

demo-retb
0x026: ret ‘ F ‘ DIE| M| W
bubble [Flp| E[mM[w
bubble F| D| E| M| W
bubble F| D| E| M W‘
0x00b: irmovl $5,%edi # Return FI o[E] M[w]
Condition F D E M w
Processing ret stall bubble | normal | normal | normal

33

bool F_stall =

Conditions for a load/use hazard

E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d _srcB } ||

Stalling at fetch while ret passes through pipeline

IRET in { D_icode, E icode, M _icode };
bool D_stall =

Conditions for a load/use hazard

E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d_srcB };
bool D_bubble =

Mispredicted branch

(E_icode == IJXX && !e Bch) ||

Stalling at fetch while ret passes through pipeline

IRET in { D_icode, E_icode, M icode };
bool E_bubble =

Mispredicted branch

(E_icode == IJXX && !e Bch) ||

Load/use hazard

E_icode in { IMRMOVL, IPOPL } && E_dstM in { d_srcA, d srcB};

35

32
Implementing Pipeline Control
v
W_code
"
c.8en H
- vaic \ valA \ valB astg\am stc [srce
= Combinational logic generates pipeline control signals
= Action occurs at start of following cycle
34
Control Combinations
Load/use Mispredict retl ret2 ret3
M M M M M| ret
E| Load E| JXX E E| ret E | bubble
D| Use D D| ret D | bubble | D | bubble
Combination A
Combination B
= Special cases that can arise on same clock cycle
Combination A
= Not-taken branch
= retinstruction at branch target
Combination B
= Instruction that reads from memory to %esp
= Followed by ret instruction
36

Page 6

Control Combination A

Mispredict retl i =
| Insuucton 3
E JXX E [—
D D| ret
Combination A
Condition F D = M w
Processing ret stall bubble | normal | normal | normal
Mispredicted Branch| normal | bubble | bubble | normal | normal
Combination stall bubble | bubble | normal | normal

= Should handle as mispredicted branch
= Stalls F pipeline register
= But PC selection logic will be using M_valM anyhow

Control Combination B

Load/use retl
M M
E| Load E
D Use D ret
T Combination B T
Condition F D = M w
Processing ret stall bubble | normal | normal | normal
Load/Use Hazard stall stall bubble | normal | normal
Combination stall |bubble +| bubble | normal | normal
stall

= Would attempt to bubble and stall pipeline register D
= Signaled by processor as pipeline error

37
m Rising m
Input=y Output = x. = clock. = Output =y
Normal D= Dy
stall bubble =
=0 jL =0
I it M Output Rising Output
nput = y WP X ook N utput = x
Stall =D x—=> =D x>
stall bubble =
-1 A5
Input [Output Rising Output
nput = y I > utput = nop
Bubble =D x—=> = o=
o
stall bubble [
=0 jL =1
39
bool D_bubble =
Mispredicted branch
(E_icode == IJXX && !e_Bch) ||
Stalling at fetch while ret passes through pipeline
IRET in { D_icode, E icode, M_icode
but not condition for a load/use hazard
&& ! (E_icode in { IMRMOVL, IPOPL }
&& E_dstM in { d_srcA, d_srcB });
Condition F D = M w
Processing ret stall bubble | normal | normal | normal
Load/Use Hazard stall stall bubble | normal | normal
Combination stall stall bubble | normal | normal
= Load/use hazard should get priority
m ret instruction should be held in decode stage for additional
cycle
41

38
Handling Control Combination B
Load/use retl
M M
E| Load E
D Use D ret
T Combination B T
Condition F D E M w
Processing ret stall bubble | normal | normal | normal
Load/Use Hazard stall stall bubble | normal | normal
Combination stall stall bubble | normal | normal
= Load/use hazard should get priority
m ret instruction should be held in decode stage for additional
cycle
40
Pipeline Summary
Data Hazards
= Most handled by forwarding
© No performance penalty
= Load/use hazard requires one cycle stall
Control Hazards
m Cancel instructions when detect mispredicted branch
® Two clock cycles wasted
= Stall fetch stage while ret passes through pipeline
® Three clock cycles wasted
Control Combinations
= Must analyze carefully
m First version had subtle bug
® Only arises with unusual instruction combination
42

Page 7

