JDEP 284H
Foundations of Computer Systems

Cache Memories

Dr. Steve Goddard
goddard@cse.unl.edu

http://cse.unl.edu/~goddard/Courses/JDEP284

Giving credit where credit is due

mMost of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.

m| have modified them and added new
slides.

Topics

mGeneric cache memory organization
mDirect mapped caches

mSet associative caches

mimpact of caches on performance

Cache Memories

Cache memories are small, fast SRAM-based memories
managed automatically in hardware.
= Hold frequently accessed blocks of main memory

CPU looks first for data in L1, then in L2, then in main
memory.

Typical bus structure:
CPU chip

register file
%C: Ay
cache
I system bus memory bus

cache bus

/o
bridge

main
memory|

bus interface

ir
o

Inserting an L1 Cache Between
the CPU and Main Memory

% } The tiny, very fast CPU register file

The transfer unit between has room for four 4-byte words.

the CPU register file and {
the cache is a 4-byte block.

line 0 The small fast L1 cache has room
line 1 l:l for two 4-word blocks.
The transfer unit between
the cache and main { I
memory is a 4-word block
(16 bytes). block 10
The big slow main memory
block 21 has room for many 4-word
blocks.
block 30

General Org of a Cache Memory

1 valid bit ttag bits B = 2b bytes
Cache is an array perline per line per cache block
of sets.
01«0 B2
Each set contains o ‘ 129 H ‘ ‘ ‘ ‘ E lines
one or more lines. set 0: i per set
baiid [tag J[o]2 o]
Each line holds a
block of data. ‘ tag H 0 ‘ 1 ‘ e \B—l\
set 1: cc
=z [tag J[o]a]--- o]
batid [tag J[o0[1]-- [B1]
set S-1: cc
batid [tag J[o0]1[--- 5]
Cache size: C =B x E x S data bytes

Page 1

Addressing Caches

Address A:
t bits s bits b bits

[o[i[--- B

set0: [0]1]--- B <tag> <set index> <block offset>
0f[1]---B-1
set 1:

[v] Ctag J[o]1]:-- 1
= The word at address A is in the cache if
the tag bits in one of the <valid> lines in

0[1 [[B1 set <set index> match <tag>.
et S-1: hiid

(ofi[:- o]

The word contents begin at offset
<block offset> bytes from the beginning
of the block.

Direct-Mapped Cache

Simplest kind of cache

Characterized by exactly one line per set.

selo:‘ ‘ tag H cache block ‘ ‘}EZI lines per set
sell:‘ ‘ tag H cache block ‘ ‘

selS—l:‘ ‘ tag H cache block ‘ ‘

Accessing Direct-Mapped Caches

Set selection
m Use the set index bits to determine the set of interest.

set 0:‘ ‘ tag ‘ ‘ cache block ‘ ‘
selected set set 1: | ‘ tag ‘ cache block |

[tbits T Oglgltosl T b bits] set S—l:‘ ‘ tag H cache block ‘ ‘

tag setindex block offset’

Accessing Direct-Mapped Caches

Line matching and word selection

= Line matching: Find a valid line in the selected set with a
matching tag

= Word selection: Then extract the word

=1? (1) The valid bit must be set
s 5 6 7

| s e
se|ectedset(.):‘[ouo]\ [T 1 IwglwllWlwsl‘

(2) The tag bits in the cache _
line must match the N

(3) If (1) and (2), then

cache hit,
tag bits in the address and block offset
t bits s bits b bits ¢ st_elecés‘
0110 i 100 starting byte.
™ tag setindex block offset’

10

Direct-Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/block,
S=4 sets, E=1 entry/set

Address trace (reads):
0[0000,], 1 [0001,], 13[1101,], 8 [1000,], O [0000,]

0 [0000,] (miss) 13[1101,] (miss)
v tag data v tag data
1] 0 [Mo 1] 0 [Moq
@ @) 11 vz
8[1000,] (miss) 0[0000,] (miss)
v tag data v tag data
1 1 M[8-9] 1 0 M[0-1]
“ 1 1 [M[12-13] ®) 1 1 |M[12-13]

11

Why Use Middle Bits as Index?

4-line Cache High-Order Middle-Order
Bit Indexin Bit Indexin
boo
bo1

High-Order Bit Indexing

= Adjacent memory lines would
map to same cache entry

m Poor use of spatial locality

Middle-Order Bit Indexing
m Consecutive memory lines map
to different cache lines
= Can hold C-byte region of
address space in cache at one
time

PHHEHPHRHHEHEOOOOOOOO

Set Associative Caches

Characterized by more than one line per set

set 0: [tag | [cacheblock | e e oot et
‘ tag ‘ ‘ cache block ‘ p
set1: [tag] [cacheblock |
‘ tag ‘ ‘ cache block ‘
set S-1: [tag | cache block |
[tag | [cacheblock |

13

Accessing Set Associative Caches

Set selection
= identical to direct-mapped cache

set0: ‘ tag ‘ ‘ cache block ‘

. [tag] [cacheblock |

Selected set | o1 [tag][cacheblock |

) [tag] [cacheblock |

. ‘ tag ‘ ‘ cache block ‘

[- \Og%nosl\ bbits setS% [tag H cache block |
™ tag setindex block offset’

14

Accessing Set Associative Caches

Line matching and word selection
= must compare the tag in each valid line in the selected set.

=1? (1) The valid bit must be set.

il

0o 1 2 3

T TTTTT]
seecred=et O O] Qouo LT T T Twlwlwlw]
(2) The tag bits in one l (3) If (1) and (2), then
of the cache lines must =? cache hit, and
match the tag bits in block offset selects
the address starting byte.
t bits s bits b bits
[oito [i 100]
™ tag setindex block offset’

15

Multi-Level Caches

Options: separate data and instruction caches, or a
unified cache

Processor Unified

Memory

size: 200B 8-64KB 1-4MB SRAM 128 MB DRAM 30 GB
speed: 3ns 3 ns 6 ns 60 ns 8ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8B 32B 32B 8 KB

larger, slower, cheaper

16

Intel Pentium Cache Hierarchy

L1 Data
1cycle latency
16 KB
4-way assoc |<—H* |2 Unified
Regs: ls—=| write-through 128KB--2 MB i
32B lines 4-way assoc | M’::gr
Write-back Up to AgB
Write allocate 2
L1 Instruction 32B lines
16 KB, 4-way
32B lines

Processor Chip

17

Cache Performance Metrics

Miss Rate
= Fraction of memory references not found in cache
(misses/references)

= Typical numbers:
® 3-10% for L1
® can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
= Time to deliver a line in the cache to the processor (includes
time to determine whether the line is in the cache)
= Typical numbers:
® 1 clock cycle for L1
@ 3-8 clock cycles for L2

Miss Penalty
= Additional time required because of a miss
® Typically 25-100 cycles for main memory

Page 3

Writing Cache Friendly Code

Repeated references to variables are good (temporal
locality)

Stride-1 reference patterns are good (spatial locality)

Examples:
= cold cache, 4-byte words, 4-word cache blocks

int sumarrayrows (int a[M] [N]) int sumarraycols(int a[M] [N])

int i, 3, sum = 0; int i, 3, sum = 0;
for (i = 0; i < M; i++)
for (3 = 0; 3§ < N;i j++)
sum += al[il [§];
return sum;

for (§ = 0; 3 < Ni j#+)
for (i = 0; i < M; i++)
sum += alil [§1;
return sum;

Miss rate = 1/4 = 25% Miss rate = 100%

19

The Memory Mountain

Read throughput (read bandwidth)
= Number of bytes read from memory per second (MB/s)

Memory mountain

= Measured read throughput as a function of spatial and
temporal locality.

= Compact way to characterize memory system performance.

Memory Mountain Test Function

/* The test function */

void test(int elems, int stride) {
int i, result = 0;
volatile int sink;

for (i = 0; i < elems; i += stride)
result += datalil;
sink = result; /* So compiler doesn't optimize away the loop */

}

/* Run test(elems, stride) and return read throughput (MB/s) */

double run(int size, int stride, double Mhz)
{
double cycles;
int elems = size / sizeof (int);
test(elems, stride); /* warm up the cache */
cycles = fcyc2(test, elems, stride, 0); /* call test(elems,stride) */
return (size / stride) / (cycles / Mhz); /* convert cycles to MB/s */
}
21
Pentium Il Xeon
1200 550 MHz
| 16 KB on-chip L1 d-cache
g 1000 16 KB on-chip L1 i-cache
2 | 512 KB off-chip unified
5 | L2 cache
2 800
)
E
3
£
K]
2 "
Ridges of
Slopes of Temporal
Locali
Spatial ity
Locality
?
stride (words) 9 working set size (bytes)
0
El
23

20
/* mountain.c - Generate the memory mountain. */
#define MINBYTES (1 << 10) /* Working set size ranges from 1 KB */
#define MAXBYTES (1 << 23) /* ... up to 8 MB */
#define MAXSTRIDE 16 /* Strides range from 1 to 16 */
#define MAXELEMS MAXBYTES/sizeof (int)
int data[MAXELEMS] ; /* The array we'll be traversing */
int main()
int size; /* Working set size (in bytes) */
int stride; /* Stride (in array elements) */
double Mhz; /* Clock frequency */
init_data(data, MAXELEMS); /* Initialize each element in data to 1 */
Mhz = mhz(0); /* i the clock */
for (size = MAXBYTES; size >= MINBYTES; size >>= 1) {
for (stride = 1; stride <= MAXSTRIDE; stride++)
printf ("%.1£\t", run(size, stride, Mhz));
printf ("\n");
exit(0);
}
22
Slice through the memory mountain with stride=1
= illuminates read throughputs of different caches and
memory
1200
main memory L2 cache L1 cache
region region region
1000 =
é 800 -
S 600 H -
]
< a0 H —
e
- W | |
0
£ 58 F 3 gEigoEoEoEoaa
§ 5 & %
working set size (bytes
9 (bytes) 2

Page 4

A Slope of Spatial Locality

Slice through memory mountain with size=256KB
= shows cache block size.

800

700 T

600 1

500

one access per cache line
400 1

300 T

read throughput (MB/s)

200 H

100 1

0

sl s2 s3 s4 s5 s6 s7 s8 s9 s10 sll s12 s13 sl4 si5 s16

stride (words)

25

Matrix Multiplication Example

Major Cache Effects to Consider
= Total cache size
e Exploit temporal locality and keep the working set small (e.g., by using
blocking) 7+ i3k */
= Block size for (i=0; i<n; i++)
e Exploit spatial locality

Variable sum
{ held in register

i J<n; J++)
sum = 0.0;
for (k=0; k<n; k++)
Description: sum += alil [k] * blkl[j1;
= Multiply N x N matrices ! clil] = sum;

m O(N”3) total operations
m Accesses
e N reads per source element
o N values summed per destination
» but may be able to hold in register

}

26

Miss Rate Analysis for Matrix Multiply

Assume:
m Line size = 32B (big enough for 4 64-bit words)
= Matrix dimension (N) is very large
® Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows

Analysis Method:
= Look at access pattern of inner loop

= = S
i f0 g

=t

27

Layout of C Arrays in Memory
(review)

C arrays allocated in row-major order
= each row in contiguous memory locations

Stepping through columns in one row:
mfor (i = 0; i < N; i++)
sum += a[0] [i];
m accesses successive elements
= if block size (B) > 4 bytes, exploit spatial locality
® compulsory miss rate =4 bytes / B
Stepping through rows in one column:
mfor (i = 0; i < n; i++)
sum += al[i] [0];
= accesses distant elements

= no spatial locality!
® compulsory miss rate =1 (i.e. 100%)

28

Matrix Multiplication (ijk)

/* ik */ Inner loop:
for (i=0; i<n; i++) {
for (j=0; j<n; j++) { *J)
sum = 0.0;)
for (k=0; k<n; k++) '
sum += alil [kl * bIk][3]; A 8 ¢
clil[j] = sum; | | ‘
} Row-wise Column- Fixed
wise

Misses per Inner Loop lteration:
A B c
0.25 1.0 0.0

29

Matrix Multiplication (jik)

/* 3ik */ Inner loop:
for (j=0; j<n; j++) {
for (i=0; i<n; i++) { (*J
sum = 0.0; .
£ =0; : (i%)
or (k=0; k<n; k++)
sum += alil [kl * blkl [§]; A B c

cl[il [j]1 =

o 1

Row-wise Column- Fixed
. . wise
Misses per Inner Loop lteration:
A B [
0.25 1.0 0.0

30

Page 5

Matrix Multiplication (Kij)

/* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = alil [k];
for (j=0; j<n; j++)
cl[il [§]1 += r * bkl [j];

Inner loop:

? () gc 0
|

Row-wise Row-wise

1

Fixed

Misses per Inner Loop lteration:

Matrix Multiplication (ikj)

/* ikj */
for (i=0; i<n; i++) {
for (k=0; k<n; k++) {
r = alil [k];

Inner loop:

E € g (i)
B C

for (j=0; j<n; j++) A
clil [§] += r * bkl [j];
} I
) . . .
Fixed Row-wise Row-wise

Misses per Inner Loop lteration:

A B [
0.0 0.25 0.25
32
Matrix Multiplication (kji)
/* kil Inner loop:
for (k=0; k<n; k++) { .
for (3=0; j<n; j++) { (*,K) (*J)
r = blkl[j];
for (i=0; i<n; i++)
Clil[] += alil [kl * =; A c
} |1
}
Column- Fixed Column-
wise wise
Misses per Inner Loop Iteration:
A B c
1.0 0.0 1.0
34

A B c
0.0 0.25 0.25
31
Matrix Multiplication (jki)
/% ki o/ Inner loop:
for (j=0; j<n; j++) {
for (k=0; k<n; k++) { (*K (*i
r = bkl [j];
for (i=0; i<n; i++)
Clil[3] += alil [kl * r; A c
}]
Column - Fixed Column-
wise wise
Misses per Inner Loop Iteration:
A B [
1.0 0.0 1.0
33
Summary of Matrix Multiplication
ijk (& jik): kij (& ikj): iki (& kji):
« 2 loads, O stores « 2 loads, 1 store « 2 loads, 1 store
* missesfiter =1.25 «mi fiter=05 emi fiter = 2.0
for (i=0; i<n; i++) { for (k=0; k<n; k++) { for (j=0; j<n; j++) {
for (j=0; j<n; j++) { for (i=0; i<n; i++) { for (k=0; k<n; k++) {
sum =0.0; 1 =a[i][k]; T =b[K](j];
for (k=0; k<n; k++) for (=0; j<n; j++)
sum += afi][k] * bK](j]; clilli] +=r * blK](j];
cli](i] = sum; } }
} } }
}
35

Pentium Matrix Multiply Performance

Miss rates are helpful but not perfect predictors.
® Code scheduling matters, too.

60

2
8

Cyclesfiteration
@
g

%ﬁ
W
(==

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400
Array size (n)

N
8

36

Page 6

Improving Temporal Locality by
Blocking
Example: Blocked matrix multiplication
= “block” (in this context) does not mean “cache block”.
= Instead, it means a sub-block within the matrix.
= Example: N = 8; sub-block size = 4

AJJ AlZ Bu BJ2 Cu Cn
X =
AZ] AZZ le EZZ sz CZZ

Key idea: Sub-blocks (i.e., A,) can be treated just like scalars.

Cu = AuBu +ALB, Cpp = ApBip +ALB,
Co1 = ApByy +AyB;, Cpo = AnByy + AyBy,

37

Blocked Matrix Multiply (bijk)

for (jj=0; jj<n; jj+=bsize) {
for (i=0; i<n; i++)
for (j=3jj; j < min(jj+bsize,n); j++)
cl[il [3]1 = 0.0;
for (kk=0; kk<n; kk+=bsize) {
for (i=0; i<n; i++) {
for (j= j < min(jj+bsize,n); j++) {
sum = 0.0
for (k=kk; k < min(kk+bsize,n); k++) {
sum += alil [k] * b[k][j]l;

c[i]l [§] += sum;

38

Blocked Matrix Multiply Analysis

= Innermost loop pair multiplies a 1 X bsize sliver of A by a bsize
X bsize block of B and accumulates into 1 X bsize sliver of C
= Loop over i steps through n row slivers of A & C, using same B
for (i=0; i<n; i++) {
for (j=jj; j < min(jj+bsize,n); j++) {
sum = 0.0
for (k=kk; k < min(kk+bsize,n); k++) {
sum += a[i] [k] * b[k][j];

Innermost c[i] [§] += sum;

Loop Pair
Update successive

row sliver accessed
bsize times block reused n
times in succession

elements of sliver

39

Pentium Blocked Matrix
Multiply Performance

Blocking (bijk and bikj) improves performance by a
factor of two over unblocked versions (ijk and jik)
u relatively insensitive to array size.

—— kji
- ki
—&— kij
% ikj
- jik
-e-ijk
-G~ bijk (bsize = 25)
& bikj (bsize = 25)

Cyclesfiteration

0 O o o o o o o
B OLLILPPHLS LS LS

Array size (n)

40

Concluding Observations

Programmer can optimize for cache performance
= How data structures are organized
= How data are accessed
® Nested loop structure
® Blocking is a general technique

All systems favor “cache friendly code”
= Getting absolute optimum performance is very platform
specific
® Cache sizes, line sizes, associativities, etc.
= Can get most of the advantage with generic code
® Keep working set reasonably small (temporal locality)
® Use small strides (spatial locality)

41

Page 7

