
Page 1

Floating Point

Dr. Steve Goddard
goddard@cse.unl.edu

JDEP 284H
Foundations of Computer Systems

http://cse.unl.edu/~goddard/Courses/JDEP284

2

Giving credit where credit is due
Most of slides for this lecture are based on
slides created by Drs. Bryant and
O’Hallaron, Carnegie Mellon University.
I have modified them and added new
slides.

3

Topics
IEEE Floating Point Standard
Rounding
Floating Point Operations
Mathematical properties

4

Floating Point Puzzles
For each of the following C expressions, either:

Argue that it is true for all argument values
Explain why not true

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f < -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

5

IEEE Floating Point

IEEE Standard 754IEEE Standard 754
Established in 1985 as uniform standard for floating point
arithmetic

Before that, many idiosyncratic formats
Supported by all major CPUs

Driven by Numerical ConcernsDriven by Numerical Concerns
Nice standards for rounding, overflow, underflow
Hard to make go fast

Numerical analysts predominated over hardware types in
defining standard

6

Fractional Binary Numbers

RepresentationRepresentation
Bits to right of “binary point” represent fractional powers of 2
Represents rational number:

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .
1
2
4

2i–1

2i

• • •

•• •

1/2
1/4
1/8

2–j

bk ⋅2k

k=− j

i
∑

Page 2

7

Frac. Binary Number Examples
ValueValue RepresentationRepresentation

5 3/4 101.112
2 7/8 10.1112
63/64 0.1111112

ObservationsObservations
Divide by 2 by shifting right
Multiply by 2 by shifting left
Numbers of form 0.111111…2 just below 1.0

1/2 + 1/4 + 1/8 + … + 1/2i + … → 1.0
Use notation 1.0 – ε

8

Representable Numbers
LimitationLimitation

Can only exactly represent numbers of the form x/2k

Other numbers have repeating bit representations

ValueValue RepresentationRepresentation
1/3 0.0101010101[01]…2
1/5 0.001100110011[0011]…2
1/10 0.0001100110011[0011]…2

9

Numerical FormNumerical Form
–1s M 2E

Sign bit s determines whether number is negative or positive
Significand M normally a fractional value in range [1.0,2.0).
Exponent E weights value by power of two

EncodingEncoding

MSB is sign bit
exp field encodes E
frac field encodes M

Floating Point Representation

s exp frac

10

EncodingEncoding

MSB is sign bit
exp field encodes E
frac field encodes M

SizesSizes
Single precision: 8 exp bits, 23 frac bits

32 bits total
Double precision: 11 exp bits, 52 frac bits

64 bits total
Extended precision: 15 exp bits, 63 frac bits

Only found in Intel-compatible machines
Stored in 80 bits
» 1 bit wasted

Floating Point Precisions

s exp frac

11

“Normalized” Numeric Values
ConditionCondition

exp ≠ 000…0 and exp ≠ 111…1

Exponent coded as Exponent coded as biasedbiased valuevalue
E = Exp – Bias

Exp : unsigned value denoted by exp
Bias : Bias value
» Single precision: 127 (Exp: 1…254, E: -126…127)
» Double precision: 1023 (Exp: 1…2046, E: -1022…1023)
» in general: Bias = 2e-1 - 1, where e is number of exponent bits

SignificandSignificand coded with implied leading 1coded with implied leading 1
M = 1.xxx…x2

xxx…x: bits of frac
Minimum when 000…0 (M = 1.0)
Maximum when 111…1 (M = 2.0 – ε)
Get extra leading bit for “free”

12

Normalized Encoding Example
ValueValue

Float F = 15213.0;

1521310 = 111011011011012 = 1.11011011011012 X 213

SignificandSignificand
M = 1.11011011011012
frac= 110110110110100000000002

ExponentExponent
E = 13
Bias = 127
Exp = 140 = 100011002

Floating Point Representation (from Lecture 2):
Hex: 4 6 6 D B 4 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000

140: 100 0110 0

15213: 1110 1101 1011 01

Page 3

13

Denormalized Values
ConditionCondition

exp = 000…0

ValueValue
Exponent value E = –Bias + 1
Significand value M = 0.xxx…x2

xxx…x: bits of frac

CasesCases
exp = 000…0, frac = 000…0

Represents value 0
Note that have distinct values +0 and –0

exp = 000…0, frac ≠ 000…0

Numbers very close to 0.0
Lose precision as get smaller
“Gradual underflow”

14

Special Values
ConditionCondition

exp = 111…1

CasesCases
exp = 111…1, frac = 000…0

Represents value ∞ (infinity)
Operation that overflows
Both positive and negative

E.g., 1.0/0.0 = −1.0/−0.0 = +∞, 1.0/−0.0 = −∞
exp = 111…1, frac ≠ 000…0

Not-a-Number (NaN)
Represents case when no numeric value can be determined
E.g., sqrt(–1), ∞ − ∞

15

Summary of Floating Point
Real Number Encodings

NaNNaN

+∞−∞

−0

+Denorm +Normalized-Denorm-Normalized

+0

16

Tiny Floating Point Example

88--bit Floating Point Representationbit Floating Point Representation
the sign bit is in the most significant bit.
the next four bits are the exponent, with a bias of 7.
the last three bits are the frac

Same General Form as IEEE FormatSame General Form as IEEE Format
normalized, denormalized
representation of 0, NaN, infinity

s exp frac

02367

17

Values Related to the Exponent
Exp exp E 2E

0 0000 -6 1/64 (denorms)
1 0001 -6 1/64
2 0010 -5 1/32
3 0011 -4 1/16
4 0100 -3 1/8
5 0101 -2 1/4
6 0110 -1 1/2
7 0111 0 1
8 1000 +1 2
9 1001 +2 4
10 1010 +3 8
11 1011 +4 16
12 1100 +5 32
13 1101 +6 64
14 1110 +7 128
15 1111 n/a (inf, NaN)

18

Dynamic Range
s exp frac E Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

Page 4

19

Distribution of Values

66--bit IEEEbit IEEE--like formatlike format
e = 3 exponent bits
f = 2 fraction bits
Bias is 3

Notice how the distribution gets denser toward zero. Notice how the distribution gets denser toward zero.

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

20

Distribution of Values
(close-up view)

66--bit IEEEbit IEEE--like formatlike format
e = 3 exponent bits
f = 2 fraction bits
Bias is 3

-1 -0.5 0 0.5 1
Denormalized Normalized Infinity

21

Interesting Numbers
DescriptionDescription expexp fracfrac Numeric ValueNumeric Value

ZeroZero 00…0000…00 00…0000…00 0.00.0

Smallest Pos. Smallest Pos. DenormDenorm.. 00…0000…00 00…0100…01 22–– {23,52}{23,52} X 2X 2–– {126,1022}{126,1022}

Single ≈ 1.4 X 10–45

Double ≈ 4.9 X 10–324

Largest Largest DenormalizedDenormalized 00…0000…00 11…1111…11 (1.0 (1.0 –– εε) X 2) X 2–– {126,1022}{126,1022}

Single ≈ 1.18 X 10–38

Double ≈ 2.2 X 10–308

Smallest Pos. NormalizedSmallest Pos. Normalized 00…0100…01 00…0000…00 1.0 X 21.0 X 2–– {126,1022}{126,1022}

Just larger than largest denormalized
OneOne 01…1101…11 00…0000…00 1.01.0

Largest NormalizedLargest Normalized 11…1011…10 11…1111…11 (2.0 (2.0 –– εε) X 2) X 2{127,1023}{127,1023}

Single ≈ 3.4 X 1038

Double ≈ 1.8 X 10308

22

Special Properties of Encoding
FP Zero Same as Integer ZeroFP Zero Same as Integer Zero

All bits = 0

Can (Almost) Use Unsigned Integer ComparisonCan (Almost) Use Unsigned Integer Comparison
Must first compare sign bits
Must consider -0 = 0
NaNs problematic

Will be greater than any other values
What should comparison yield?

Otherwise OK
Denorm vs. normalized
Normalized vs. infinity

23

Floating Point Operations
Conceptual ViewConceptual View

First compute exact result
Make it fit into desired precision

Possibly overflow if exponent too large
Possibly round to fit into frac

Rounding Modes (illustrate with $ rounding)Rounding Modes (illustrate with $ rounding)
$1.40$1.40 $1.60$1.60 $1.50$1.50 $2.50$2.50 ––$1.50$1.50

Zero $1 $1 $1 $2 –$1
Round down (-∞) $1 $1 $1 $2 –$2
Round up (+∞) $2 $2 $2 $3 –$1
Nearest Even (default) $1 $2 $2 $2 –$2

Note:
1. Round down: rounded result is close to but no greater than true result.
2. Round up: rounded result is close to but no less than true result.

24

Closer Look at Round-To-Even

Default Rounding ModeDefault Rounding Mode
Hard to get any other kind without dropping into assembly
All others are statistically biased

Sum of set of positive numbers will consistently be over- or under-
estimated

Applying to Other Decimal Places / Bit PositionsApplying to Other Decimal Places / Bit Positions
When exactly halfway between two possible values

Round so that least significant digit is even
E.g., round to nearest hundredth
1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)
1.2450000 1.24 (Half way—round down)

Page 5

25

Rounding Binary Numbers

Binary Fractional NumbersBinary Fractional Numbers
“Even” when least significant bit is 0
Half way when bits to right of rounding position = 100…2

ExamplesExamples
Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 (1/2—up) 3
2 5/8 10.101002 10.102 (1/2—down) 2 1/2

26

FP Multiplication
OperandsOperands

(–1)s1 M1 2E1 * (–1)s2 M2 2E2

Exact ResultExact Result
(–1)s M 2E

Sign s: s1 ^ s2
Significand M: M1 * M2
Exponent E: E1 + E2

FixingFixing
If M 2, shift M right, increment E
If E out of range, overflow
Round M to fit frac precision

ImplementationImplementation
Biggest chore is multiplying significands

27

FP Addition
OperandsOperands

(–1)s1 M1 2E1

(–1)s2 M2 2E2

Assume E1 > E2

Exact ResultExact Result
(–1)s M 2E

Sign s, significand M:
Result of signed align & add

Exponent E: E1

FixingFixing
If M 2, shift M right, increment E
if M < 1, shift M left k positions, decrement E by k
Overflow if E out of range
Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

28

Mathematical Properties of FP Add
Compare to those of Compare to those of AbelianAbelian GroupGroup

Closed under addition? YES
But may generate infinity or NaN

Commutative? YES
Associative? NO

Overflow and inexactness of rounding
0 is additive identity? YES
Every element has additive inverse ALMOST

Except for infinities & NaNs

MonotonicityMonotonicity
a b ⇒ a+c b+c? ALMOST

Except for infinities & NaNs

29

Math. Properties of FP Mult
Compare to Commutative RingCompare to Commutative Ring

Closed under multiplication? YES
But may generate infinity or NaN

Multiplication Commutative? YES
Multiplication is Associative? NO

Possibility of overflow, inexactness of rounding
1 is multiplicative identity? YES
Multiplication distributes over addition? NO

Possibility of overflow, inexactness of rounding

MonotonicityMonotonicity
a b & c 0 ⇒ a *c b *c? ALMOST

Except for infinities & NaNs

30

Floating Point in C
C Guarantees Two LevelsC Guarantees Two Levels

float single precision
double double precision

ConversionsConversions
Casting between int, float, and double changes numeric
values
Double or float to int

Truncates fractional part
Like rounding toward zero
Not defined when out of range

» Generally saturates to TMin or TMax
int to double

Exact conversion, as long as int has 53 bit word size
int to float

Will round according to rounding mode

Page 6

31

Answers to Floating Point Puzzles

• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f < -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NAN

• x == (int)(float) x No: 24 bit significand

• x == (int)(double) x Yes: 53 bit significand

• f == (float)(double) f Yes: increases precision

• d == (float) d No: loses precision

• f == -(-f); Yes: Just change sign bit

• 2/3 == 2/3.0 No: 2/3 == 0

• d < 0.0 ⇒ ((d*2) < 0.0) Yes!

• d > f ⇒ -f < -d Yes!

• d * d >= 0.0 Yes!

• (d+f)-d == f No: Not associative

32

Ariane 5
Exploded 37 seconds
after liftoff
Cargo worth $500 million

WhyWhy
Computed horizontal
velocity as floating point
number
Converted to 16-bit
integer
Worked OK for Ariane 4
Overflowed for Ariane 5

Used same software

33

Summary

IEEE Floating Point Has Clear Mathematical PropertiesIEEE Floating Point Has Clear Mathematical Properties
Represents numbers of form M X 2E

Can reason about operations independent of implementation
As if computed with perfect precision and then rounded

Not the same as real arithmetic
Violates associativity/distributivity
Makes life difficult for compilers & serious numerical
applications programmers

