
 1

RAIK 284H Final Project
Spring 2010

I. Purpose
You will be building an 8-bit RISC processor using the Altera Quartus II software. This
will be a single-cycle processor consisting of a ROM component for storing instructions,
a decoder for interpreting instructions, an ALU for performing operations, and a RAM
unit for loading and storing register values. Then, you will be writing an assembler to
build programs for your processor and writing a (fairly) simple assembly program to run
on your processor. You will then download your finished program and processor to the
Altera board to demonstrate its completeness. To accomplish all of this, you will be
working in teams of two.

II. Processor Specifications

A. Overall Structure
Your processor must contain the basic sections required for a single-cycle processor,
which include a clock, a program counter with jump/branch resolution, an instruction-
fetching unit, a register file, an arithmetic logic unit, and a memory access unit. Your
processor should have a high-level graphical design that shows all of these components at
a minimum. For subcomponents, you may either use a graphical layout or a hardware
description language such as VHDL (some restrictions apply, see table for details).

Component Implementation
Overall design Graphical layout
 Clock unit Provided
 Program counter unit Graphical layout or hardware language
 Instruction fetching unit Graphical layout or hardware language
 Register file unit Hardware language
 ALU Graphical layout or hardware language
 Memory access unit Graphical layout or hardware language

If you feel that other units are beneficial, you may implement them in the method of your
choice. Keep in mind that graphically laying out components makes it easy to see how
the component works, but makes it more difficult to make changes since all of the wires
have to be remapped.

B. Implementation Details
Here are some required specifications for your processor and the types of instructions it
will be able to execute. In certain places, you will be given a choice of how to implement
your processor. These situations are indicated with ***. You are encouraged to be
creative here, and consider what would be useful additional capabilities for your
processor. As part of your assignment, provide a small, informal document that explains
the decisions you made.

 2

Instruction size 28 bits
Addressing space 8 bits
Immediate value size 8 bits
Number of registers 16

Each instruction will have the structure shown in the table below. RS, RT, and RD are all
4 bit register identifiers that map to one of the 16 registers. RS and RT are generally used
as source registers (see the operation codes), while RD is a destination register.

Note: Register zero should ALWAYS contain the value zero, and should never be written
to. You should ensure this by disallowing storing to register zero in the processor design.
In addition, the assembler should warn that storing to register 0 will not maintain value if
a program attempts it.

Op code ALU code RD RS RT IMMEDIATE
4 bits 4 bits 4 bits 4 bits 4 bits 8 bits

The operation codes supported by the processor are as shown in the below table. You
may notice that the rightmost bit can be used to determine if the operation requires the
immediate value in the case of the alu/alui and jr/j instructions.

Op
Code

Name Usage Description

0000 nop Nop No operation
0010 alu alu RD, RS, RT Performs an ALU operation with one of the

ALU codes
0011 alui alui RD, RS,

IMMEDIATE
Performs an ALU operation with one of the
ALU codes using an immediate value as one
of the operands

0100 jr jr RS Jumps to line stored in register
0101 j j IMMEDIATE Jumps to the line stored in the immediate
1001 lw lw RD,

IMMEDIATE(RS)
Loads a value from RAM or dipswitch state

1011 sw sw RT,
IMMEDIATE(RS)

Stores a display digit

1101 beq beq RS, RT,
IMMEDIATE

Branches if two register values are equal

111*
0001
10*0

*** *** Implement any instruction/instructions you
would like, or none at all.

Note that the lw and sw instructions are not just used for reading and writing to memory
in the traditional sense. Instead, they are used for reading display digits, getting the state
of dipswitches and toggle buttons, and storing values on the display. To accomplish this,
special "addresses" are used which map to different inputs and outputs. The addresses

 3

you are required to use are listed below. Addresses 128-255 should correspond to valid
storage locations, which must function like ordinary memory.

Address Input/Output map
0 Input the status of the dip switches as an 8-bit integer.
1 Input the status of the left push button (0 if up, 1 if down)
2 Input the status of the right push button (0 if up, 1 if down)
3-127 *** (Implement this however you would like)

0 Output a number to the digits (display in hex, see below)
1 Set the left decimal point
2 Set the right decimal point
3-127 *** (Implement this however you would like)

For example, you could use lw $2, 1($0) to read the value from the left push button and
store the result in register 2. Also, you could use sw $5, 0($0) to store the number in
register 5 into the display. For example, the following simple program would continually
display the state of the push buttons in the decimal points.

loop: lw $1,1($0)
sw $1,1($0)
lw $1,2($0)
sw $1,2($0)
jmp loop

For the alu and alui operation codes, the following arithmetic operations should be
allowed in the alu code slot. If you feel that allowing more alu operations would be
beneficial, you may do so with the slots that are currently reserved for no operation.

 4

Alu code Operation Description
0000 add Adds the two operands
0001 *** Implement this however you would like.
0010 sub Subtracts the second operand from the first
0011 *** Implement this however you would like.
0100 and Performs the binary AND operation
0101 nand Performs the binary NAND operation
0110 or Performs the binary OR operation
0111 nor Performs the binary NOR operation
1000 xor Performs the binary XOR operation
1001 xnor Performs the binary XNOR operation
1010 slt Returns 255 if the first operand is less than the

second operand, otherwise returns 0.
1011 sge Returns 255 if the first operand is greater than or

equal to the second operand, otherwise returns 0.
11** *** Implement this however you would like.

C. Simulation
In order to demonstrate that your design works, you should create simulation files which
use boundary input conditions to test the functionality of components in your processor.
This will help you both by ensuring you that your processor is robust and by giving
reason for partial credit in case your processor implementation does not run the on the
Altera board. You are required to simulate your ALU component to demonstrate
correctness, but you are encouraged to simulate other components as well. The ALU
simulation should cover all of the operations and several (at least 3) representative
operands for that operation.

III. Assembler Specifications
In order to create programs for you processor, you will write an assembler in a language
of your choice (Java, C++, or C# recommended). This assembler must be able to run in
Windows. It should be a simple command-line program with the syntax myassembler
infile outfile. The input file should be the source assembly program. The output file
should be a file that conforms to Altera's MIF format for read-only memory. A sample
assembly program and MIF output file are included in the project handout.

Your assembler should make 2 passes over the code. On the first pass, the assembler
should parse all symbols and check for syntax errors. On the second pass, the assembler
should resolve all final addresses (such as mapping labels to real addresses for jump
targets).

Please include specific instructions on how to build your program. If you use C++/C#
with Visual Studio, provide a solution or project file. If you use Java, provide a makefile
for building your program. If you wish to use another language, please double-check with
the TA first (the following languages are OK without asking: Java, C++, C, C#, VB.NET,
Perl, and PHP).

 5

IV. Assembly Program
To test your processor, you will implement a batch calculator. This calculator will run in
two phases. In the first phase, the user will be able to enter a series of numbers (no more
than 100 numbers will be entered), which the program will store in the data memory of
the processor. In the second phase of the program, the user will be able to scroll through
the stored values using the pushbuttons, and then select an ALU operation (add, and, or,
nand, nor, xor, xnor) to perform on them.

Specifically, the following behaviors will be observed in Phase 1. (The left dot will be on
while in this phase)
Left Button Right Button State/Action
Unpressed Unpressed Display shows the number of stored values.
Pressed Unpressed Display shows the value in the dips switches. When the

left button becomes unpressed, the value in the dip
switches will be saved to memory.

Unpressed Pressed Display shows the last stored value (0 if no previous
value).

Pressed Pressed Display shows the number of stored values, with right
dot on. When either button is released, move to Phase 2.

The following behaviors will be observed in Phase 2. (The right dot will be on while in
this phase)
Left Button Right Button State/Action
Unpressed Unpressed Display shows value at current memory position.
Pressed Unpressed Decrement memory location once (wrap around if at

first stored element) and display the new address.
Unpressed Pressed Increment memory location once (wrap around if at last

stored element) and display the new address.
Pressed Pressed Perform ALU operation on all stored values together.

Display shows the result, and memory becomes reset.
When either button is released, move back to Phase 1.
The ALU operation performed depends on the state of
the dip switches according to the following table.

Dip switch value Operation
0 and
1 nand
2 or
3 nor
4 xor
5 xnor
6-127 *** (implement this however you would like)

 6

V. Presentation
To demonstrate that your processor works, you will give a short presentation to the
instructors in which you show your program and assembler. These presentations will be
during dead week, at the same time the processor is due. A signup for times will be
available closer to the due date.

VI. Grading
You will be graded using the following metrics:

1. Completeness and functionality of the processor implementation (90 points)
a. Design compiles and simulates properly (30 points)
b. Downloads to the board and runs properly (30 points)
c. Conforms to all specifications (30 points)

2. Completeness and functionality of the assembler (40 points)
a. Assembles programs to the MIF format (30 points)
b. Handles errors in the code gracefully (10 points)

3. Presentation (20 points)

VII. Timeline
The following deadlines for project components must be met in order to stay on schedule
(and get a good grade!).

Date Items Due
April 11 Assembler and first draft of assembly program
April 18 Program registers, ALU, and test cases
April 25 Fetch, decode, memory-mapped I/o, debouncer, and test cases
April 28 Complete Processor, assembler, and assembly program

VIII. Included Files
Included with this description are a number of files, which should aid you in your quest
to complete the processor. Here is a brief description of what each file is for.

display.mif – This MIF file contains a memory layout that converts a 4-bit index to the
pattern to display it as a hex digit.

clock1hz.vhd – This VHDL file steps the clock down to slower speed so your processor
will work. You can change the speed if you want by modifying the constant, however,
the speed it is set to run at is 2 kHz and should be sufficiently slow such that your
processor will not fail due to unresolved circuits.

SampleAssemblyProgram.s – This is a sample MIPS assembly program (which should
run on your processor, if you are daring enough to try it). This program runs a vending
machine program that accepts and returns change. You may use this as a template for

 7

what format your registers and comments should look like. Any questions about MIPS
assembly can be directed to the TA.

SampleMIF.mif – This MIF file is the compiled version of SampleAssemblyProgram.s.
Use it as an example of the output your assembler should generate.

IX. Useful Information
Here are some things you will need to set up for the project.

1. Assign the correct device

Go to AssignmentsDevice…
Choose FLEX10K from the device family
Choose EPF10K70RC240-4 from the devices list

2. Map pins

Go to Assign  Pin/Location/Chip
Add the following pin mappings to your inputs and outputs.

 Inputs
a. on-board oscillator (@25.175MHz) is connected to pin 91.
b. push-buttons (active-low):
FLEX_PB1 28
FLEX_PB2 29
c. Dip Switches (’1’ when switch is open)
FLEX_SWITCH-1 41
FLEX_SWITCH-2 40
FLEX_SWITCH-3 39
FLEX_SWITCH-4 38
FLEX_SWITCH-5 36
FLEX_SWITCH-6 35
FLEX_SWITCH-7 34
FLEX_SWITCH-8 33

Outputs
d. Dual-digit seven-segment display (active-low)
Display Segment pin for digit 1 pin for Digit 2

a 06 17
b 07 18
c 08 19
d 09 20
e 11 21
f 12 23
g 13 24

Decimal Point 14 25

 8

X. Hints
Here are some hints as you work on this:

• Pay attention to useful patterns in the opcodes. They are designed to minimize the
complexity of logic inside the processor.

• For the display component, it might be a good idea to include two small
LPM_ROM components, one for each digit, containing the display.mif file.
Alternately, you could implement the 7-segment display separately as a
component.

• Quartus II compiles slowly. Very slowly. Take this in to account while doing your
development, and have a plan for downtime. Watching Quartus during its
compilation will eat your productivity very quickly.

• It might be helpful to develop top-down, but you should definitely test (using
simulation or otherwise) bottom-up.

• One feature of Quartus is its ability to use conduits to manage the connections
between blocks. To learn more about this, it may be a good idea to run through
some of the tutorials for Quartus II that are inside its help system.

• Start early. Even if you can’t put in many hours before two weeks before the
processor is due, at least getting a start on it at an earlier time will help you be
able to have some time to understand what is going on.

• The implementation-specific features are an optional portion of this project.
However, even if you do not implement anything for them intentionally, you
should be able to explain what will happen if those op codes are used or that
memory is accessed.

• The pins may function in the reverse of how you would expect them to. For
instance, the display pins will display a segment if a 0 is output on them, but turn
it off if a 1 is output on them. Similar behaviors may exist for the push buttons
and dip switches. You may need to use NOT gates or LPM_INV (for arrays) to
flip the inputs/outputs to achieve expected output.

• Altera’s Quick Reference to LPM (the Library of Parameterized Modules) can be
useful. It is available at http://www.altera.com/literature/catalogs/lpm.pdf

