
The Cyclic Executive Model and Ada

T. P. Baker’

Department of Computer Science

Florida State University

Tallahassee, FL EM04

Abstract:
Periodic processes are major parts of many real-time
embedded computer applications. The programming
language Ada permits programming simple periodic
processes, but it has some serious limitations; produc-
ing Ada programs with real-time performance com-
parable to those produced to date usin traditional
cyclic executives requires resorting to tee %* mques that
are specific to one machine or compiler. We present
and evaluate the cyclic executive model for control-
ling periodic processes. The features and limitations
of Ada for pro
discussed and

ramming cyclic executive software are
% emonstrated, and some practical tech-

niques for circumventing Ada problems are described.

1 INTRODUCTION
The Programming language Ada has been man-

dated by the U.S. Department of Defense (DOD) as
the single common programming language for defense
mission-critical computer applications, which include
many hard real-time systems. Some commercial de-
velopers of hard real-time systems, including avionics
and industrial process control systems, have also ex-
pressed an intent to use Ada. However, many people
are concerned that Ada may be inappropriate or in-
adequate for programming real-time software. One
critical issue appears to be how (or perhaps whether)
Ada can be used to express designs based on the
widest used and best understood paradigm for de-
signing software to meet hard real-time requirements
- the cyclic executive.

There are three objectives and contributions in
this paper. One is to define the notion of a cyclic exec-
utive, discuss its advantages and disadvantages, and
present several implementation techniques. While the
literature reports many applications of the cyclic ex-
ecutive method for controlling periodic processes, for
example, in [7] and [ll], nowhere can one find a com-
plete presentation of what it is, why it is used, and
what are the major issues and problems surrounding
it. A second purpose is to evaluate Ada as a pro-
gramming language for constructing real-time soft-
ware within the cyclic executive model. We are not
breaking new ground here but are bringing together
material that has appeared in various places in recent
years, for example [13] and [21]. The third aim is to

‘Supported in part by the the U.S. Office of Naval Research
(contract # N0001487G0116).

‘Supported in part by The National Science Foundation
(grant CCR-8700435).

CR2618-7/88/0006/0120%01.66 0 1988 IEEE I20

Alan Shaw2

Department of Computer Science

University of Washington

Seattle, WA 98195

present a variety of solutions to some of the more
serious Ada problems. Most of these, such as timer
control or handling frame overruns, can be treated di-
rectly with the Ada tasking features at some expense
to machine independence or clarity, e.g. [16]; an-
other approach that has the advanta es of predictable
and efficient performance is to use a 7 ow-level tasking
package, e.g. [5].

The next section describes the cyclic executive
approach to building real-time programs. After a re-
view of the relevant Ada tasking features, Section
3 illustrates and evaluates two “standard” methods
within Ada to code a cyclic executive, one using the
delay statement and the second employing timer in-
terrupts. The next section deals with mode changes
using Ada and Section 5 then discusses several ways
to solve the frame overrun problem. Section 6 shows
how many of the Ada problems can be treated with
a standard low-level tasking package.

2 THE CYCLIC EXECUTIVE
2.1 Definitions and Rationale

Periodic processes are important, if not the
most important, software components of real-time
computer systems. A periodic process consists of an
“action” (i.e., a computation) that is executed repeat-
edly, in a regular cyclic pattern. The duration of the
time interval between the possible start of one exe-
cution and that of the next is a constant, called the
period of the process. A periodic process also has a
deadline for completion of its action. Generally, in
the absence of data buffering, the deadline cannot be
greater than the period; that is, the action must be
completed by the time it is due to be repeated. In
many applications the deadline is assumed to be the
same as the period. A third characterizing feature is
the time required to execute the action, typically a
worst case execution time. For scheduling purposes,
a periodic process can be defined as a triple (c, p, d),
with c 5 d 5 p, where c is the execution time, d is
the deadline, and p is the period [18].

A cyclic executive is a control structure or pro-
gram for explicitly interleaving the execution of sev-
eral periodic processes on a single CPU; the inter-
leaving is done in a deterministic fashion so that ex-
ecution timing is predictable. It can be viewed as an
implementation technique for a design methodology
in which a real-time system consists mainly of a col-
lection of periodic processes. The process interleaving
is defined according to a “cyclic schedule”.

--

A cyclic schedule specifies an interleaving of ac-
tions that will enable processes to execute within their
periods and deadlines. It is divided into one or more
major schedules, which describe the sequence of ac-
tions to be performed during some fixed period of
time, called the major cycle. The actions of a ma-
jor schedule are executed cyclically., going back to the
beginning at the start of each maJor cycle. Because
of the periodicity constraints, the length of a major
cycle is equal to the lowest common multiple of the
periods of its constituent processes. Different major
schedules correspond to different modes of operation
of the system; control of execution switches between
major schedules in response to real-time events.

Each major schedule is further divided into one
or more minor schedules or frames. Frame bound-
aries correspond to points at which correct timing
is enforced, via hardware interrupts generated by a
timer circuit. Each frame is allocated a fixed length
of time during which its sequence of actions must be
executed.

If the actions of a frame are completed early,
the processor either idles or executes one or more
background processes until the beginning of the next
frame. If the actions of a frame are not completed on
time, it is an error, called a frame overrun.

A major restriction of cyclic schedules is that no
frame may be longer than the shortest period of all
the processes being scheduled. For convenience and
simplicity, it is common practice to require frames to
be of equal length. The length of a frame is then
called the minor cycle of the system. Note that in
this case the enforcement of frame boundaries is es-
pecially simple, using a periodic timer. Because of
the restriction imposed by the shortest period, any
action that takes more than one minor cycle needs to
be broken up into subactions, each of which is short
enough to complete within one frame. An action or
subaction that is selected as a scheduling unit in a
frrarcne& been called a strip, slice, scheduling block,

Example:
Consider the four processes A=(l,lO,lO),

B=(3,10,10), C=(2,20,20), and D=(8,20,20). (We as-
sume deadlines are equal to periods in each case.)
The action of D is divided into two subactions Dl
and D2 executed in sequence with times 2 and 6, re-
spectively. The other actions are not divided.

One acceptable major schedule for these pro-
cesses, expressed in the form of a Gantt chart, is:

Time
0 6 10 14 20

AB C Dl idle A B D2

This schedule has a major cycle of 20 time units
and a minor cycle of 10 time units. It consists of two
frames, {A, B, C, Dl} and {A, B, D2). (Where there
is no danger of confusion, we use a process name to
denote its actions; for example, action A is the action

of process A.)

There are typically several choices of minor cy-
cle that are consistent with the a given set of pro-
cesses. Given a collection of processes represented by
a set of triples {(cr,pi, di), (c~,P,, &)}, the re-
quirements these impose on the minor cycle m are:

m 5 di, for i = 1, n.

m must be greater than or equal to the compu-
tation time of the longest (sub-) action.

m must divide the major cycle, M.
(This is equivalent to requiring that m divide one
of the pi.)

m + (m - gcd(m,pi)) 5 di for i = 1, 7~.
(This subsumes Requirement 1. gcd stands for
the greatest common divisor function.)

The latter requirement says that (if the pro-
cesses are started in phase) between every release
time and the corresponding deadline there must be
a complete frame. The worst case is when the re-
lease time comes just after the start of a frame. The
closest these two events can be without being coin-
cident is when they are separated by gcd(m,pi), and
gcd(m,pi) < m. In this case, the delay between the
release time and the beginning of the next frame is
m - gcd(m,pi).

k.p j.m (j+ l).m k.p+d

m - gcd(m,p) m

It is especially interesting that the minor cycle
is not necessarily as small as the greatest common
divisor of the periods, nor is it sufficient that it be
less than or equal to all the periods.

For example, consider three pro-
cesses E=(1,14,14), F=(2,20,20), and G=(3,22,22).
Requirement 1 narrows the list of possible minor cy-
cles to the range 1...14. Requirement 2 eliminates 1
and 2, narrowing the range to 3..14. Requirement 3
eliminates candidates that are not divisible by (one
of) 2,5,7, or 11, leaving only 4,5,7,10,11, and 14. Re-
quirement 4 reduces the final list of candidates to 4,5,
and 7.

Of course, the chief benefits of the cyclic
scheduling model are timing predictability and sim-
plicity. Deadlines can be enforced within the preci-
sion of one frame. By scheduling an action within
a frame (or combination of frames) that lies entirely
between the release-time and the deadline of the ac-
tion, we can be sure the action will not be executed
too early, and that the deadline will not be missed
without detection. Moreover, if we have a reliable
upper bound on the execution time of each action we
can be assured that every process will always meet
its deadline.

121

1.
-

Implementations are particularly simple and ef-
ficient. Actions and subactions could be explicitly in-
terleaved either by a preprocessor or manually; alter-
natively, the schedule could be represented by a table
of action and subaction pointers, that is interpreted
by the executive. In either case, context-switching
at run-time is very fast. Another benefit is that the
schedule can be constructed o enforce resource and
precedence constramts, mclu d. mg exclusive access to
shared resources, without the risk of deadlock or un-
predictable delays.

These virtues, however, must be weighed
against a number of problems, complexities, and dis-
advantages, that are discussed next.
2.2 Issues and Problems

One major task involved in the cycle executive
approach to controlling periodic processes is to pro-
duce a schedule. Assuming that we are given major
and minor cycle times, a set of periodic processes each
characterized by a (c, p, d) triple, and a breakdown
of process actions into scheduling blocks with their
execution times, the problem is to generate an inter-
leaving of the process actions or subactions to meet
their deadline and period constraints. This prob-
lem is known to be NP-hard for one processor, which
means that in the worst case an exponential amount
of work appears necessary to determine whether a fea-
sible schedule exists. (Non-preemptive scheduling is
related to the bin-packing problem, and is discussed
in [12].) Fortunately, if we do not insist on optimality,
practical cases can be scheduled using heuristics.

First, it should be noted that the existence of
a schedule requires that the processor utilization, de-
fined as the sum of the ratios c/p over all processes,
must be less than or equal to 1. One useful scheduling
algorithm is the rate monotonic one; this preemptive
algorithm assigns static priorities to processes based
on their periods - the shorter the period the higher
the priority. In a classic paper, [15] show that in
the case when deadlines are identical to periods this
algorithm will produce a feasible schedule whenever
one exists based on static priorities. Furthermore, a
schedule always exists if processor utilization is less
than approximately 0.693 (In 2). Note that this al-
gorithm does not use any a priori division of actions
into subactions. However, the relevant heuristic for
our purposes is that one should try to fit actions and
subactions into a schedule starting with that subset
having the shortest periods.

A second preemptive scheduling result, that is
more general, is the optimality of the earliest dead-
line scheduling algorithms [9]. This is a dynamic pol-
icy that always selects that ready process with the
nearest deadline; it is optimal in that it will always
produce a schedule if one exists. The obvious and
useful heuristic for producing a cyclic schedule is to
try to schedule those actions or subactions in earliest
deadline order. In the example schedule of Section
2.1, the actions and subactions appear according to
both a rate monotonic and earliest deadline for each
frame; processor utilization is (l/10 + 3/10 + 2/20
+ 8/20) = 0.9.

122

A principal reason that the above results are not
used directly is that they require processes be pre-
emptible at arbitrary points, rather than at points
corresponding to subaction completions. Conse-
quently, the implementation of the schedule, i.e. the
executive, would need a more complex timing mecha-
nism to trigger the next process to be resumed and a
more complex context-switching mechanism for sav-
ing and restoring process states. The result may
be too much execution overhead for real-time perfor-
mance. Moreover, arbitrary preemption may not be
acceptable due to synchronization and resource man-
agement requirements.

Scheduling becomes more complicated if one in-
cludes the additional constraints due to possible re-
source contention among processes or due to syn-
chronization requirements. These constraints impose
restrictions on the order of interleaving actions and
subactions among processes. Common single-unit re-
source sharin ,
tions, can be %

typically implemented by critical sec-
andled simply by definin

section as an indivisible subaction [ll . ‘3
each critical

An exam-
ple of a heuristic technique that appears practical for
tasks with resource constraints is given in [22].

Another difficulty is splitting actions into sub-
actions, i.e., determining the scheduling blocks for
each periodic process. Almost always, this is done
manually, based on natural “regions” of code such
as critical sections or in terms of functional units,
e.g. [6]. In principle, a compiler could also produce
scheduling units, for example, by defining a “basic
block” as a subaction as in [lo]. In both cases, manual
and automatic generation of scheduling units, there
remains the very difficult job of predicting the execu-
tion time of a subaction,

Timing predictabrhty for computer programs is
still very much a glimmer of hope for the future,
rather than a reality. Measurements usually produce
average case behaviors, analysis techniques are only
just beginning to be developed for worst case results,
e.g. [20], and code simulators that attempt to fol-
low worst case paths are still considered research, e.g.
[17]. Because of this state of affairs, predictions for
action execution times (the c component of the peri-
odic process characterization) and for subaction ex-
ecution times are at best approximations, and often
optimistic ones. Errors in timing estimates may cause
frtrme overruns, and are the reason that overruns oc-

The response to a frame overrun varies, accord-
ing to the requirements of the application. Most of-
ten, the execution of the (minor) schedule for the
frame is simply terminated, and execution of the
schedule for the next frame is begun. In certain cases
it may also be acceptable to suspend computation of
the overrun minor schedule and complete it later as
background, or to complete the minor schedule, push-
ing back the start of the next minor schedule past the
beginning of the next frame. It is common practice to
log overruns, and if the number of consecutive over-
runs exceeds some preset threshold a fault recovery
routine may be called.

Mode changes also present some difficult prob-

lems. One question is when to make a mode change.
Possibilities include changing immediately upon re-
ceipt of the corresponding event (thereby interrupt-
ing the current slice), doing it at the end of the cur-
rent action or subaction, changing at the end of the
current frame, or waiting until the completion of the
major cycle. In any case, the mode transition may
require special processing to clean up or reinitialize
certain variables. The latter amounti more or less to
“restarting” some processes.

A final issue relates to the level of program-
ming implied by the cyclic executive approach. Be-
cause of the need for timing predictability, interleav-
ing of actions from independent processes, and pre-
run time scheduling, software construction has been
a low-level activity. This appears incompatible with
the more abstract process-oriented concurrent pro-
gramming paradigm implemented by languages such
as Ada. However, the cyclic executive technique may
not be inherently incompatible with high-level pro-
gramming so much as that it is incompatible with
Ada’s model of concurrency. For example, new tools
are being developed that aim to automatically gen-
erate cyclic schedules from a high-level graphic rep-
resentation of a system design. There has been some
success in adapting such tools to generate Ada code,
using the pure procedural subset of Ada as a lower-
level implementation language.3

We have been implicitly assuming a single-
processor execution environment. Though produc-
ing optimal schedules for multiple processors is more
difficult than for a single processor, the cyclic exec-
utive model can be successfully adapted to shared-
memory multiprocessor systems and to distributed
systems [6, 141; in fact, the synchronous discipline it
imposes can simplify many of the problems that arise
with such systems, such as achieving consensus.

We have also so far addressed only periodic pro-
cesses, ignoring the other main constituent of real-
time software; i.e., sporadic (also called aperiodic or
event-driven) processes. One standard method for
treating these in the cyclic executive model is to
translate each sporadic process into an equivalent pe-
riodic process based on the worst case frequency of
events or interrupts. One then prepares a schedule
with the equivalent periodic processes included. If a
particular frame includes the start action or subac-
tion of an equivalent periodic process, then the cyclic
executive makes a run-time test at the time of initia-
tion of the frame to determine whether or not the cor-
responding sporadic process has been triggered. One
translation scheme is-derived in [18], wherethe equiv-
alent periodic process P has the same execution time
c as the corresponding sporadic process Q, a deadline
equal to Q’s execution time, and a period

p = minimum(ds - c + 1, ps)

where ds is the deadline ofQandpsis
time between successive triggers of Q.

the minimum

30ne example of such a software generation tool that has
been adapted to Ada is “Autocode”, a product of Integrated
Systems, Inc. of Santa Clara, CA.

The above method may be too pessimistic, re-
sulting in poor processor utilization. While it does
indeed handle the worst case scenario where all spo-
radic processes are triggered simultaneously by max-
imum frequency bursts of events, the probability of
this situation occurring may be vanishingly small. An
alternate method is to allocate some smaller amount
of slack time in each minor cycle for possible sporadic
processes and to rely on the frame overrun mecha-
nisms for event overloads.

3 CYCLIC EXECUTIVES IN ADA.:
Basic Solutions and Difficulties

3.1 Relevant Ada Tasking Features

rent
Ada provides a fairly general notion of concur-

process, which is called a “task”]2] . Though
space does not permit a complete disc&on of Ada
tasking here, we will review those concepts that are
most germane to the topic of this paper.

In contrast to the paradigm of deterministic
clock-driven scheduling behind the cyclic executive,
Ada’s tasking system is based on a nondeterminis-
tic event-driven scheduling model. This is a serious
problem for designers of real-time systems who want
to use Ada. Some people have suggested that real-
time systems designers must change their methodol-
ogy in order to use nondeterministic scheduling. This
may be advisable for some applications, but not for
many hard real-time applications, for example, those
where hardware interfaces impose tight deadlines and
precise timing requirements. Moreover, synchronism
often is a necessary assumption in reducing difficult
mathematical problems to manageable proportions.
Thus, if it comes to a conflict between Ada and de-
terministic scheduling, Ada may lose.

An Ada task is not ordinarily periodic; it ex-
ecutes indefinitely, subject to its own internal logic.
The Ada Reference Manual [2] describes each task
as executing on its own virtual processor. If, as is
normally the case, several tasks need to share one
physical processor, their executions are implicitly in-
terleaved in some (unspecified) fashion by the Ada
run-time system.

The only direct means of controlling task timing
is the delay statement, which allows a task to sus-
pend its own execution for a specified duration. The
timing of a task may also be controlled, indirectly,
through a rendezvous with a task of known timing.
For a rendezvous to take place one task must call an
entry of another task, and the other task must execute
an accept statement for that entry. Whichever task
attempts to rendezvous first waits for the other task
to execute the complementary statement, at which
time the rendezvous begins. During the rendezvous,
the calling task waits while the accepting task may
execute an action.

A hardware interrupt is handled as a special
case of a rendezvous. The-hardware device is viewed
as the caller and the handler as the acceptor. Thus,
if there exists a hardware timer capable of generating
interrupts it can be used to control the timing of a
task.

There
itly causing

are two mechanisms in Ada for explic-
a task to abandon its normal execution

123

path. First, there is abortion. A task may be aborted
by another task or itself using the abort statement.
Second, there is the exception facility of the language.
Examples and evaluations of all of the above features
are presented below.

3.2 USING THE DELAY STATEMENT
3.2.1 Naive Solutions

At first glance, there seems to be a very sim-
ple and straightforward way of implementing periodic
processes as Ada tasks, using a delay statement. In
particular, page 9-12 of the Ada Reference Manual
suggests the following. (We illustrate with the same
set of periodic processes and schedule as the example
of Section 2.1.)

task CYCLIC_EXECIJTIVE_l;

task body CYCLJC_EXECDTIVE_1 is
use CALEIDAB;
INTERVAL: constant:= 0.01;
IEXT_TIHE: TIHE:= CLOCK + IITEILVAL;
FBAHE_lLlHBEB: IlTEGW:= 1;

begin loop delay IHT_TIHE - CLOCK;
FBME_HlIHBEB:=@BAHB_IDHBER+I) mod 2;
case FBAHE_IDHBERis
when D=> A; B; C; Di;
when l=> A; 8; D2;
end cas*;
IEXT_TIIIE:= IEXT_TIHE + IITERVAL;
if CLOCDIEXT_TIHE
then EAIDLE_FSUHE_OVERRUI; end if;

end loop;
end CYCLIC_EXECDTIVE_1;

In this example the function CLOCK, defined in
the standard package CALENDAR, is used to calcu-
late the delay required to schedule the next execution
of the task in order achieve periodic execution. The
constant INTERVAL is the desired period, which is
the minor cycle time of the schedule.

Alternatively, the schedule could be table-
driven. Instead of explicitly interleaving the periodic
process actions in the executive code, we can store the
schedule in a table that is interpreted by the cyclic
executive [21].

These apparent solutions offer a clean abstract
algorithmic description of the cyclic executive archi-
tecture. However, they have a number of more or less
serious problems that make them unsatisfactory for
hard real-time applications. Some of these problems
arise because the scheduling task runs concurrently
with the other system activities, such as background
tasks.
3.2.2 Problems with Ada Semantics and Performance

The main difficulty is the accuracy and pre-
dictability of timing. The delay statement does not
provide any upper bound on the amount of time a
task may be delayed. The Ada Reference Manual
says only that the execution of a task that executes
a delay statement is suspended “for at least the du-
ration specified”. Some attempt has been made to
compensate for this in the way the delay is computed
in the above code. In fact, using this technique, the

Reference Manual says: “... the interval between two
successive interactions is only approximate. However,
there will be no cumulative drift as long as the du-
ration of each iteration is (sufficiently) less than IN-
TERVAL” (page 9-12 of [2]). There remains the prob-
lem of essentially unlimited ‘Sitter” - i.e., variation
in the interval between executions of the action. In
the case that the average duration of each iteration
is greater than INTERVAL, there will also be cumu-
lative drift. If there is a frame overrun, it is not de-
tected until after the frame has completed.

Purchasers of Ada compilers intended for real-
time applications are insisting (successfully) on
stronger semantics for the delay statement. Specif-
ically, they are requiring that the delay be imple-
mented preemptively, with some known accuracy.
Thus, there is some implementation-defined value,
EPSILON, defined such that a task executing “de-
lay D;” is guaranteed to be released (awakened) so
that it is again eligible for execution within D + EP-
SILON seconds 4. This interpretation is also likely
to be officially incorporated in the next revision of
the Ada language Standard. It does reduce the prob-
lem of jitter, provided the delayed process is able to
preempt the CPU when it is released.

Since Ada allows static priorities to be assigned
to tasks, whether or not a delayed task can resume
execution as soon as it becomes eligible depends on
the priority of the delayed task relative to other tasks
that may be eligible for execution at the same time.
No matter how priorities are assigned to tasks, if there
are several tasks with relatively prime periods there
will be times that a task “wakin up” from a delay
will need to wait for another tas to relinquish the &
CPU - i.e., there will be some jitter. Predicting jitter
for a periodic task thus depends on complete knowl-
edge of the activities of all other tasks of equal or
higher priority.

Even if the delayed task has higher priority than
all other tasks, it will not resume execution immedi-
ately if the Ada run-time environment is in a criti-
cal section. This was a fairly serious problem in the
early Ada implementations. Complex operations per-
formed by the Ada run-time support system, such
as task creation and termination, can be very time-
consuming; if these are implemented as monolithic
critical sections, they can add significantly to delays,
in an unpredictable fashion. Some of the more recent
implemented and proposed Ada run-time systems try
to keep critical sections short by dividing up these
longer operations, but they cannot eliminate the crit-
ical sections entirely.

Another problem area is with computational
overhead, due to the generality of the Ada task-
ing features employed. In our example above, over-
head comes from several sources: (1) the type TIME
will probably require a 64 bit representation to meet
Ada’s requirements, so that the arithmetic used to
calculate the next delay is rather expensive; (2) the

‘A formal analysis of how this kind of delay statement se-
mantics makes it possible to reason about higher-level language
software for controlling periodic processes is presented in [20].

I24

function CLOCK is likely to be expensive, either be-
cause it involves an I/O operation or because there
must be mutual exclusion between the asynchronous
operations of fetching the (64-bit) clock value and
updating the clock; (3) the delay statement, if im-
plemented in the most accurate way, will involve in-
serting the task into a delay-queue (ordered by time),
possibly resetting a hardware timer, switching to an-
other task, and eventually switching back. Even the
simple use of the rendezvous feature, for example in
a table-driven implementation of the executive, can
incur significant overhead. The large size and unpre-
dictable nature of these overheads has been demon-
strated in the experimental study of several Ada com-
pilers reported in [8].

Another difficulty results from the uncertain se-
mantic relationship between the delay statement and
CLOCK function. Presumably the calendar clock will
need to be adjusted occasionally, to keep the system
time synchronized with the rest of the world. Ada
does not define what, if anything, happens to any
pending delays when this happens. The Ada speci-
fication also omits any definition of the accuracy of
the TIME value returned by CLOCK; consequently,
there is no guarantee that meeting a constraint on
TIME will come close to meeting the same constraint
on real-time (where, for example, real-time is defined
by the National Bureau of Standards “clock”).

3.3 Using an Interrupt from a Hardware Clock

A second way of implementing periodic ex-
ecution in Ada is to make use of periodic inter-
rupts generated by hardware timers. Here, machine-
independence is sacrificed for more precise control
over timing. For example, if TIMER’address is the
address associated with a regular interrupt with pe-
riod TICK, the following would work:

task CYCLIC_EXECUTIVE_2 is
entry TIXER_IJTERRlJPT;

for TII¶ER_IJTERRUPT~address use at TIMERJaddress;
end CYCLIC-EXECUTIVE_2;

task body CYCLIC_EXECUTIVE_2 is
FRAIIE_JU?IBER: IJTEGER:= 1;

begin loop accept TIH!ZR_IJTERIlUPT;

FRAIf~JUHBER:=(FRAHE_JURBER+1) mod 2;

case FRAHE_JUHBER is
when O=> A; B; C; Dl;

when l=> A; B; D2;

end case;
end loop;

end CYCLIC_EXECUTIVE_S;

Presumably the arrival of the interrupt will be
as accurate as the hardware supports. However, if
a TIMER- INTERRUPT arrives while CYCLIC_-
EXECUTIVE-2 is executing, the interrupt will be
blocked, according to Ada semantics. The language
does not specify whether an interrupt arriving during
this time is queued or lost. If the interrupt is lost,
there is a serious problem, since an entire minor cy-
cle will be skipped. If it is buffered, the problem may
be less serious; the next frame will be started as soon

as this one completes. Unfortunately, if the condi-
tion causing the overrun is persistent, the schedule
will drift. In either case, the result may be unsatis-
fat tory.

This problem can be circumvented by splitting
the action into a separate task from the handling of
the interrupt, in such a way that the interrupt is al-
ways enabled.

task CYCLIC-EXECUTIVE-3 is -- the task that
-- controls timing

entry TI~ER_IJTERRUPT;

for TIXER_IITERRUPT~address use at TIHER'address;
pragma PRIORITY(SYSTM. PRIORITY'last);

end CYCLIC_EXECUTIVE_3;

task ACTIOI is -- the task that does the work

entry JEXT_FRAHE;
end ACTIOJ;

task body CYCLIC_EXECUTIVE_J is

begin loop accept TIHER_IJTERRUPT;

select ACTIOJ.JEXT_FRAHE;

else HAJDLE_FRARE_OVERRUI;
end select;

end loop;

end CYCLIC_EXECUTIVE_3;

task body ACT101 is

FRAHE_JU?IBER: IJTEGER:=i;

begin loop accept JEXT_FRAHE;
FRAHE_JUHBER:=(FRAHE_JUHBER+l) mod 2;
case FRAHE_JUHBER is

when O=> A; B; C; Dl;
when l=> A; B; D2;
end case;

end loop;

end ACTIOJ;

This approach is proposed and described in
more detail in [16], though Ada tasking has under-
gone changes since that paper was published, render-
ing some details obsolete. A more recent and more
complete case study can be found in [13].

All solutions based on a timer interrupt re-
quire that a hardware timer be available - one that
is not already in use by the standard Ada run-time
environment. Since many Ada implementations use
one timer to implement standard delays and another
to implement CALENDAR.CLOCK, it is likely that
there may be none left. Finally, few compilers to-
day provide an efficient implementation of interrupt
entries, and some do not support them at all. The
solution above may therefore not be feasible.

4 MODE CHANGES
A cyclic executive can also be coded to support

mode changes. As an example, consider a two mode
system with mode 0 controlling the four periodic pro-
cesses of our example and mode 1 controlling another
set. For simplicity, we will assume that the frame
sizes (minor cycle times) in both modes are identi-
cal, and that modes change only on frame bound-
aries. Doing mode changes at times other than frame
boundaries is similar to the problem of detecting and

125

in Section 5, and

HODE: HODES; pragma SEARED0IODE);
IEUJWDES: HODES; pra(pa SEAREDtSEG_HODE);
HODE_CEAIGED: BOOLBAI; pra(ppa SWlED(INlDE_CEMGED);

task HODE_COITRDLLERis
entq suxTCE;
for SGITCB uee at -- some input device

end HODE_COITEOLL.EB;

task body EODE_COITBOLLBR is

begin loop accept SUXTCH do
if MODE=0
then IlW_HODE:=i;
else GF.W_HODE:=O; end
HODE_CEAIGED:-true;
end WITCH;

end loop;
end HODE_CO~TROLLEIl;

if;

task body CYCLIC_EXECUTIVE_4 is
begin loop accept TXHELIITERBUPT;

if HODE_CBAIGED
then)PlDE_CEAIGED := FUSE;

HODE := IEU_HODE; end if;
caeo IDDE ir
when 0 => ACTIOI_I¶ODE_O.IEXT_FBAHE;

when 1 => ACTIOI_IIODE_1.IEXT_FllAEE;
sndcase;

end loop;
end CYCLIC_EXECUTIVE_4;

task body ACTIOI_HOD~O is
begin -- the sam code as ACT101 of Section 3.3 except

-- that FBAHE_IUHBEB is reset if HODE_CEAIGED.
end ACTIOI_HODE_O;

One special problem related to mode-changing
concerns background tasks. In typical applications
a mode change will involve restarting certain back-
ground tasks associated with the new mode and may
require adjusting the relative allocation of processor
cycles among the background tasks. Ada provides no
way of doing this.

The main weakness of the above solution is
that frame overruns are not detected. This could
be accomplished by using the code of CYCLIC--
EXECUTIVE- 3 and moving the mode change check-
ing and case analysis into a single ACTION task
that contains separate sections each on ACTION_-
MODE_ 0 and ACTION-MODE_ 1 processing.

5 HANDLING FRAME OVERRUNS
How a frame overrun should be handled often

depends on the application., and sometimes the indi-
vidual frame. One policy 1s to simply log the over-
run. This is relatively simple to code in Ada, given
that the overrun is detected. Other policies, such
as terminating the offending frame and restarting it
at its next scheduled minor cycle or suspending the
offending frame and resuming it at some later con-
venient time, are much harder, requiring “erroneous”
Ada programming.

The fundamental problem in treating frame

overruns using suspension or termination policies is
that one task (the one that detects the timing fault)
must be able to asynchronously alter the control flow
of another task (the one which has overrun its alloted
time), so that it restarts at a known point. There
are additional difhculties in properly suspending the
offending task until it is scheduled again and also
in doing these activities without undue performance
penalties. (These problems also arise in implement-
ing mode changes.)

Within standard Ada, two possible mechanisms
are available for terminatin

%
frames; these are abor-

tion and exceptions. We wi consider abortion first.

5.1 Abortion
Abortion does not provide an adequate solu-

tion, unless the compiler performs several optimiza-
tions. Task abortion is slow, in general, due primarily
to complications introduced by pending rendezvous
and activations, and by families of dependent tasks.
This cost can be reduced for very simple tasks, though
compilers do not presently bother. A second problem
is that an aborted task cannot be restarted; in par-
ticular, it is no longer callable. The closest thing to
restarting such a task is to create a new task of the
same type. Because the new task is not the same task
as the aborted one, any tasks previously in communi-
cation via rendezvous with the aborted task will need
to be informed of the replacement task’s identity.

One way to avoid this problem is to make the
abortable task accessible via an access variable, as
follows:

task type ACTIOIis -- the task that does the work

entry IEXT,FBAHE;
end ACTIOI;

type ACCESS_AcTIOI is access ACTIOI;

CDBBEIT_ACTIOI: ACCEsS_ACTIOI:= new ACTIOI;

task body CYCLIC_EXECUTIVE_S is
begin loop accept TIHEB_IITZBBDPT;

select CUBBEIT_ACTIOI.IEXT_FBAME;
else abort CURREIT_ACTIOI;

CUBBEIT_ACTIOI:= new ACTIOI;
and selact;

and loop;
and CYCLIC_EXECUTIVE_C;

Unfortunately this solution is implementation-
dependent. It requires that this special case of abor-
tion and creation of a new task be done more quickly
than can be done for the general case. It also is likely
to exhaust memory, since it would be very difficult
for an implementatron to determine that the storage
of the terminated task could be reused 5. This is a
common complaint about existing Ada implementa-
tions.

An unavoidable defect is that any tasks with
pending entry calls for the aborted task will have
TASKING-ERROR raised in them, rather than hav-
ing their calls transferred to the replacement task.

5UNCHECKED-DEALLOCATION isdefinedtohaveno

effect for tasks.

126

r

Also the aborted task cannot pass any state informa-
tion on to the replacement task except through global
variables.

5.2 Exceptions
In the 1980 version of the Ada language, each

task had an attribute, ‘failure, which could be raised
in that task by another task [l]. This feature was
removed in 1983 when the current version of the Ada
language standard was established. It appears the
reason for this change was the belief that abortion
provided an adequate substitute. If still present, this
feature could be used to cut off the execution of tasks
which overrun their frames, as illustrated below:

task body CYCLIC_EXECUTIVE_6 is
begin loop accept TIHER_IITERRUPT;

select ACTIOI.IEIT_FRAME;
else raise ACTIOI'failnre;

end select;
end loop;

end CYCLIC_EXECUTIVE_G;

task body ACT101 is
FRAHE_ILMBER: IITECER:= 1;

begin loop accept IEXTJRAHE;
begin F~nE_IUIIBER:=(~I_~BER+l) mod 2;

case FRA.HE_IUMBER is
when O=> A; B; C; Dl;
when l=> A; B; D2;
end case;

exception when others=> RECUVER_FROH_OVERRUI;
end;

end loop;
end ACTIOI;

Of course, the attribute ‘failure is no longer part
of the Ada standard. An implementation is free to
support it, however, just as an implementation is free
to support the other useful tasking features dropped
from earlier versions of Ada (e.g., changeable priori-
ties, and predefined generics for semaphores and sig-
nals).

Lacking this feature, a programmer can at-
tempt to achieve the same effect. One somewhat
ad hoc technique, reported by [19], makes indirect
use of ACCESS-CHECK to enable one task to raise
an exception (CONSTRAINT_ERROR) in another.
The basic idea is for the subject task (e.g. ACTION
above) to access all its data via a single global access
variable, say DATA. If another task (e.g. CYCLIC_-
EXECUTIVE-6 above) detects that the subject task
has exceeded its time slot, it sets DATA to the value
“null”. The next attempt to dereference DATA will
result in CONSTRAINT_ERROR being raised. Our
example may then be coded:

DATA: ACCESS-DATA:= new DATA-RECORD;
TW: ACCESS-DATA;

task body CYCLIC-EXECUTIVE-7 is
begin loop accept TIHER_IITERRUPT;

select ACTIOI.IEXT_FRME;
else TRIP:= DATA; DATA:= null;

end select;

end loop;
end CYCLIC_EXECUTIVE_7;

task body ACT101 is
FRAI'ULWHBER: IITEGER:= 1;

begin loop accept IEXTJRAHE;
begin FRAHE_IUMBER:=(FRAHE_RUMBER+l) mod 2;

case FRAHEJUHBER is
when O=> A; B; C; Dl;
when l=> A; B; D2;
end case;

exception when others=>
DATA:= RIP; RECOVER_FROH_OVERRUB;

end;
end loop;

end ACTIOI;

The suppositions behind this approach are that
ACCESS-CHECK is not suppressed and that it is
implemented economically, for example, using a hard-
ware trap for illegal addresses. It also assumes that
references via DATA are made very frequently in A,
B, C, Dl, and D2. Under these (implementation-
dependent) assumptions, this technique would work,
at the expense of much extra indirect addressing.

A second, less satisfactory method uses polling;
the writer of the subject task periodically checks a
global variable to determine whether it has permis-
sion to proceed. When another task detects that the
subject task has exceeded its frame time, it withdraws
this permission by changing the value of the global
variable. When the subject task sees that its per-
mission is withdrawn, it raises an exception in itself,
unwinding outward to the point where it is to wait to
be rescheduled. This polling technique is not partic-
ularly attractive, since it not only imposes significant
computational overhead, but also destroys the mod-
ular purity of the coded actions.

So far we have only addressed the problem of
terminating an overrun frame, so that execution can
resume with the next scheduled frame. If we wish in-
stead to temporarily suspend execution of the frame,
and resume it later when there is free time, an ad-
ditional mechanism is needed. Ada provides no such
mechanism, short of polling; that is, the actions and
subactions would need to have explicit voluntary sus-
pension points interleaved within their code. Im-
plementation of frame suspension therefore requires
augmenting the standard Ada tasking model, as de-
scribed in the next section.

6 AUGMENTING ADA TASKING
Given that programming cyclic executives in

Ada requires use of nonportable features that go be-
yond the standard semantics, there is a good case for
augmenting Ada with an adequate and separate set of
low-level tasking operations. This could be provided
as a package; if such a package became standard it
would promote more portable and reusable real-time
software. One example of such a low-level tasking
package is Lace [5, 41. We will explain some features
of Lace, and show how they might be used.

6.1 The Lace Package
Tasks are identified by values of the type

127

- -_

TASK-ID. The value NULL-TASK stands for no
task. A task can find out its own ID by calling the
function SELF. A new task is created via a call to
NEW-TASK. A new task is initially “held”: that is.
it is not yet eligible for execution. It becomes eligiL
ble for execution when some (other) task calls RE-
LEASE.

Normally, a processor is preemptible. That
means that an interrupt handler can cause control of
the processor to be transferred from its current task
to some other task (other than an interrupt handler).
By calling DISABLE-PREEMPTION, a task makes
the current processor non-preemptible. Once a task
makes its processor non-preemptible, it remains that
way until the task calls DISPATCH.

Interrupt handlers may call PREEMPTION_-
OK to determine whether it is safe to preempt.
(This attribute is set to false by DISABLE_-
PREEMPTION.) H aving determined that it is safe,
a handler can preempt by calling PREEMPT.

DISPATCH makes the current processor pre-
emptible and gives Lace a chance to switch the pro
cessor to another task. Control is given to the highest
priority task of those tasks that are not already exe-
cuting on some processor and are not “held”.

A task may hold another task so that it is no
longer eligible for execution, via a call to HOLD. If
the task is executing when a HOLD is invoked on it, it
will continue executing until it is Dreemnted through
an interrupt (assuming its proces$or is preemptib&)
or until it calls DISPATCH.

Lace also provides a procedure FORCE_-
CALL(T,P). The effect is to force the task with ID T
to call the procedure with address P at the next dis
patching point. FORCE-CALL can be used to raise
an exception in a task that has overrun its frame.

6.2 Cyclic Executive Examples
Lace features are employed to pro ram frame-

overrun handling in the following examp e: ‘5

FKAKE_OVEBKDK: exception;
FRAKKJOIE: BOOLEAI;
pragma SEAKED(FKAKE_DOIE);

procedure KAISE_OVEKKDK is
begin raise FKAHE_OVEKKUI;
end BAISE_OVEKKDK;

task body CYCLIC_EKPCUTIVE_8 is
begin loop accept TIHEll_IKTEKKDPT do

if FKAHE_DOIE
then LACK.KELEASE(ACTIOI'ID)
ebe LACE.FORCE_CALL(ACTIOI~ID,

BAISE_OVEKKDK~address);
end if;
if LACB.PBKKKPTIOI_OK
then LACE.PBKKHPT; end if;
end TIHEK_IITKBiUJPT;

end loop;
end CYCLIC_EXECUTIVE_I;

task body ACT101 is
begin loop begin LACE.DISABLE_PKEEHPTIOI;

LACE.HOLDW3.F);

This solution would work for a single processor,
but Lace was designed also to permit a multiproces-
sor implementation. In that context we do not know
how to implement FORCE-CALL without waiting,
so a call cannot be forced directly by an interrupt
handler. There is also the danger of a race in which
ACTION finishes the frame and susnends itself be-
tween the time the handler discovers the frame is not
complete and the time it forces ACTION to raise an
exception. In this case ACTION would wait until
the next timer interrupt before the exception takes
effect. Solving either of these problems requires wait-
ing. Since the handler cannot wait, we need to in-
troduce an auxiliary “enforcer” task, who can wait.
When a handler wants to raise an exception in a task,
it simply releases the enforcer task, which then takes
care of the actual work of arranging for the excention
to be raised..

_ _

In a snnilar fashion, the Lace operations can
be used to implement restarts of background tasks,
and suspend and resume overrun frames. The pri-
orities of background tasks can also be adjusted via
additional Lace operations. By selective suspensions
and releases, the mix of background tasks can also be
changed.

7 CONCLUSIONS

for
We have

controllinn
presented the cyclic executive model
real-time neriodic nrocesses. The fa-

cilities and limitations of Ada for programming cyclic
executive software have been discussed and demon-
strated, and some practical techniques for circum-
venting Ada problems have been described.

Ada certainly was not designed to specially sup-
port the cyclic executive paradigm. Special support
is not necessary, so long as the standard features are
sufficient to permit programming the kinds of peri-
odic execution required in practical real-time appli-
cations. As Ada. stands, the standard features are at
best marginally sufficient for this.

128

end

FRAHE_DOIE:=TRUE;
LACE.DISPATCH;
FBAHE_DOIE:=FALSE;
FKAHK_KDXBEB:=@KAl5_KDMEXR+1) mod 2;
case FBAHEJDHBERis
when O=> A; B; C; Di;
when I=> A; B; D2;
end case;

exception when others=> null;
end;

end loop;
ACTIOI;

When a frame overrun is detected by the inter-
rupt handling CYCLIC- EXECUTIVE- 8, it causes
an exception to be raised in ACTION, by forcing AC-
TION to call a procedure which raises the exception.
The exception causes ACTION to exit to an excep-
tion handler, after which it loops back and starts the
next frame. Note that it is conceivable that the ex-
ception could be raised twice, if a second timer in-
terrupt occurs between the time the first exception is
raised and the time ACTION has made its way back
around the loop into the exception-handling frame of
the begin block.

Using several implementation-dependent fea-
tures, it does appear possible to achieve periodic
execution in Ada with a reasonable degree of con-
trol, although in an awkward way. It seems desir-
able to concentrate machine dependent features sulll-
cient to write a traditional cyclic executive in a single
informally-standardized package of low-level tasking
operations. A first step in this direction has been
made by the ACM working group [3].

A more basic problem is that Ada and other
higher-level concurrent programming languages are
incompatible with the traditional lower level ap-
proaches to writing and controlling periodic software
with hard real-time constraints. Higher level lan-
guages must have precise real-time semantics and
real-time control features before they can be used con-
veniently for this and other real-time programming.

ACKNOWLEDGEMENT
We are grateful to Kevin Jeffay for some helpful

comments and suggestions on the paper.

References

[l] Reference Manual for the Ada Programming Lan-
guage, proposed standard document, U.S. Depart-
ment of Defense (July 1980).

[2] Military Standard Ada Progmmming Language,
ANSI/MIL-STD-1815A, U.S. Department of De-
fense, Ada Joint Program Office (January 1983).

[3] Ada Runtime Environment Working Group, “A
Catalog of Interface Features and Options for
the Ada Run Time Environment”, ACM SIGAda
(1986).

[4] T.P. Baker, “A Low-Level Tasking Package for
Ada”, Proc. SIGAda Int. Conf. on the Ada Pro
gramming Language, Dec. 1987.

[5] T.P. Baker and K. Jeffay, “Corset and Lace:
Adapting Ada Runtime Support to Real-Time Sys-
terns”, Proc. IEEE Real-Time Systems Symp.,
Dec. 1987, pp 158-176.

[6] T.P. Baker and G. Scallon, “An Architecture
for Real-Time Software Systems”, IEEE Software,
May 1986, 50-58.

[7] G.D. Carlow, “Architecture of the Space Shuttle
Primary Avionics Software System”, Comm. ACM,
Vol. 27, September 1984, 926-936.

[8] R.M. Clapp, L. Duchesneau, R.A. Volz, T.N.
Mudge, and T. Schultze, “Toward Real-Time Per-
formance Benchmarks for Ada”, Comm. ACM, Vol.
29, Aug. 1986, 760-778.

[9] M. Dertouzos, “Control Robotics: The Proce-
dural Control of Physical Processes”, Proc. IFIP
Congress, 1974, pp. 807-813.

1101 M.D. Donner, “Control of Walking: Local
’ Control and Real-Time Systems”, CMU-CS-84-

121, Dept. of Computer Science, Carnegie-Mellon
Univ., May 1984 (Ph.D. Dissertation).

[ll] S.R. Faulk and D.L. Parnas, “On Synchroniza-
tion in Hard-Real-Time Systems”, Comm. ACM,
Vol. 31, March 1988, 274287.

[12] M. Garey and D. Johnson, Computers and In-
tractability, Freeman (1979) 236-244.

[13] P. Hood and V. Grover, “Designing Real Time
Systems in Ada”, SolTech Report 1123-1, submit-
ted to HQ, US Army Communications and Elec-
tronics Command (January 1986).

[14] D.M. Koch and T.P. Baker, “Verification of
Cyclic Schedules for Hard Real-Time Systems”,
technical report, FSU Department of Computer
Science (1987).

[15] C.L. Liu and J. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time Envi-
ronment”, JACM, Vol. 20, January 1973.

[16] MacLaren, Lee, “Evolving Toward Ada in
RealTime Systems”, Proceedings of the ACM-
SIGPLAN Symposium on Ada, SIGPLAN Notices,
15. 11 (1980) pp. 146-155.

[17] A.K.-L. Mok, P. Amerasinghe, M. Chen, S. Su-
tanthavibul. and K. Tantisirivat. “Svnthesis of a
Real-Time Message Processing System with Data-
Driven Timing Constraints”, Proc. IEEE Real-
Time Systems Symp., December 1987, pp 133-143.

[18] A.K.-L. Mok, “Fundamental Design Problems of
Distributed Systems for the Hard Real-Time Envi-
ronment”, Ph.D. Thesis, MIT, May 1983.

[19] 0. Roubine, oral remarks at the International
Workshop on Real Time Ada Issues, Moreton-
Hampstead, England (13-15 May, 1987).

[20] A. Shaw, “Reasoning About Time In Higher-
Level Language Software”, TR#87-08-05, Dept.
of Computer Science, Univ. of Washington, Aug.
1987. Accepted for publication in IEEE Trans. on
Software Engineering.

[21] A. Shaw, “Software Clocks, Concurrent Pro-
gramming, and Slice-Based Scheduling”, Proc.
iE8EE Real-Time Systems Symp., Dec. 1986, pp 14

[22] W. Zhao, K. Ramamritham, and J. Stankovic,
“Scheduling Tasks with Resource Requirements in
Hard Real-Time Systems”, IEEE Transactions on
Software Engineering, Vol. SE-13, May 1987, 564-
576.

129

