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Abstract: 
Periodic processes are major parts of many real-time 
embedded computer applications. The programming 
language Ada permits programming simple periodic 
processes, but it has some serious limitations; produc- 
ing Ada programs with real-time performance com- 
parable to those produced to date usin traditional 
cyclic executives requires resorting to tee %* mques that 
are specific to one machine or compiler. We present 
and evaluate the cyclic executive model for control- 
ling periodic processes. The features and limitations 
of Ada for pro 
discussed and 

ramming cyclic executive software are 
% emonstrated, and some practical tech- 

niques for circumventing Ada problems are described. 

1 INTRODUCTION 
The Programming language Ada has been man- 

dated by the U.S. Department of Defense (DOD) as 
the single common programming language for defense 
mission-critical computer applications, which include 
many hard real-time systems. Some commercial de- 
velopers of hard real-time systems, including avionics 
and industrial process control systems, have also ex- 
pressed an intent to use Ada. However, many people 
are concerned that Ada may be inappropriate or in- 
adequate for programming real-time software. One 
critical issue appears to be how (or perhaps whether) 
Ada can be used to express designs based on the 
widest used and best understood paradigm for de- 
signing software to meet hard real-time requirements 
- the cyclic executive. 

There are three objectives and contributions in 
this paper. One is to define the notion of a cyclic exec- 
utive, discuss its advantages and disadvantages, and 
present several implementation techniques. While the 
literature reports many applications of the cyclic ex- 
ecutive method for controlling periodic processes, for 
example, in [7] and [ll], nowhere can one find a com- 
plete presentation of what it is, why it is used, and 
what are the major issues and problems surrounding 
it. A second purpose is to evaluate Ada as a pro- 
gramming language for constructing real-time soft- 
ware within the cyclic executive model. We are not 
breaking new ground here but are bringing together 
material that has appeared in various places in recent 
years, for example [13] and [21]. The third aim is to 
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present a variety of solutions to some of the more 
serious Ada problems. Most of these, such as timer 
control or handling frame overruns, can be treated di- 
rectly with the Ada tasking features at some expense 
to machine independence or clarity, e.g. [16]; an- 
other approach that has the advanta es of predictable 
and efficient performance is to use a 7 ow-level tasking 
package, e.g. [5]. 

The next section describes the cyclic executive 
approach to building real-time programs. After a re- 
view of the relevant Ada tasking features, Section 
3 illustrates and evaluates two “standard” methods 
within Ada to code a cyclic executive, one using the 
delay statement and the second employing timer in- 
terrupts. The next section deals with mode changes 
using Ada and Section 5 then discusses several ways 
to solve the frame overrun problem. Section 6 shows 
how many of the Ada problems can be treated with 
a standard low-level tasking package. 

2 THE CYCLIC EXECUTIVE 
2.1 Definitions and Rationale 

Periodic processes are important, if not the 
most important, software components of real-time 
computer systems. A periodic process consists of an 
“action” (i.e., a computation) that is executed repeat- 
edly, in a regular cyclic pattern. The duration of the 
time interval between the possible start of one exe- 
cution and that of the next is a constant, called the 
period of the process. A periodic process also has a 
deadline for completion of its action. Generally, in 
the absence of data buffering, the deadline cannot be 
greater than the period; that is, the action must be 
completed by the time it is due to be repeated. In 
many applications the deadline is assumed to be the 
same as the period. A third characterizing feature is 
the time required to execute the action, typically a 
worst case execution time. For scheduling purposes, 
a periodic process can be defined as a triple (c, p, d), 
with c 5 d 5 p, where c is the execution time, d is 
the deadline, and p is the period [18]. 

A cyclic executive is a control structure or pro- 
gram for explicitly interleaving the execution of sev- 
eral periodic processes on a single CPU; the inter- 
leaving is done in a deterministic fashion so that ex- 
ecution timing is predictable. It can be viewed as an 
implementation technique for a design methodology 
in which a real-time system consists mainly of a col- 
lection of periodic processes. The process interleaving 
is defined according to a “cyclic schedule”. 
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A cyclic schedule specifies an interleaving of ac- 
tions that will enable processes to execute within their 
periods and deadlines. It is divided into one or more 
major schedules, which describe the sequence of ac- 
tions to be performed during some fixed period of 
time, called the major cycle. The actions of a ma- 
jor schedule are executed cyclically., going back to the 
beginning at the start of each maJor cycle. Because 
of the periodicity constraints, the length of a major 
cycle is equal to the lowest common multiple of the 
periods of its constituent processes. Different major 
schedules correspond to different modes of operation 
of the system; control of execution switches between 
major schedules in response to real-time events. 

Each major schedule is further divided into one 
or more minor schedules or frames. Frame bound- 
aries correspond to points at which correct timing 
is enforced, via hardware interrupts generated by a 
timer circuit. Each frame is allocated a fixed length 
of time during which its sequence of actions must be 
executed. 

If the actions of a frame are completed early, 
the processor either idles or executes one or more 
background processes until the beginning of the next 
frame. If the actions of a frame are not completed on 
time, it is an error, called a frame overrun. 

A major restriction of cyclic schedules is that no 
frame may be longer than the shortest period of all 
the processes being scheduled. For convenience and 
simplicity, it is common practice to require frames to 
be of equal length. The length of a frame is then 
called the minor cycle of the system. Note that in 
this case the enforcement of frame boundaries is es- 
pecially simple, using a periodic timer. Because of 
the restriction imposed by the shortest period, any 
action that takes more than one minor cycle needs to 
be broken up into subactions, each of which is short 
enough to complete within one frame. An action or 
subaction that is selected as a scheduling unit in a 
frrarcne& been called a strip, slice, scheduling block, 

Example: 
Consider the four processes A=(l,lO,lO), 

B=(3,10,10), C=(2,20,20), and D=(8,20,20). (We as- 
sume deadlines are equal to periods in each case.) 
The action of D is divided into two subactions Dl 
and D2 executed in sequence with times 2 and 6, re- 
spectively. The other actions are not divided. 

One acceptable major schedule for these pro- 
cesses, expressed in the form of a Gantt chart, is: 

Time 
0 6 10 14 20 

AB C Dl idle A B D2 

This schedule has a major cycle of 20 time units 
and a minor cycle of 10 time units. It consists of two 
frames, {A, B, C, Dl} and {A, B, D2). (Where there 
is no danger of confusion, we use a process name to 
denote its actions; for example, action A is the action 

of process A.) 

There are typically several choices of minor cy- 
cle that are consistent with the a given set of pro- 
cesses. Given a collection of processes represented by 
a set of triples {(cr,pi, di), . . . . (c~,P,, &)}, the re- 
quirements these impose on the minor cycle m are: 

m 5 di, for i = 1, . . . . n. 

m must be greater than or equal to the compu- 
tation time of the longest (sub-) action. 

m must divide the major cycle, M. 
(This is equivalent to requiring that m divide one 
of the pi.) 

m + (m - gcd(m,pi)) 5 di for i = 1, . . . . 7~. 
(This subsumes Requirement 1. gcd stands for 
the greatest common divisor function.) 

The latter requirement says that (if the pro- 
cesses are started in phase) between every release 
time and the corresponding deadline there must be 
a complete frame. The worst case is when the re- 
lease time comes just after the start of a frame. The 
closest these two events can be without being coin- 
cident is when they are separated by gcd(m,pi), and 
gcd(m,pi) < m. In this case, the delay between the 
release time and the beginning of the next frame is 
m - gcd(m,pi). 

k.p j.m (j+ l).m k.p+d 

m - gcd(m,p) m 

It is especially interesting that the minor cycle 
is not necessarily as small as the greatest common 
divisor of the periods, nor is it sufficient that it be 
less than or equal to all the periods. 

For example, consider three pro- 
cesses E=(1,14,14), F=(2,20,20), and G=(3,22,22). 
Requirement 1 narrows the list of possible minor cy- 
cles to the range 1...14. Requirement 2 eliminates 1 
and 2, narrowing the range to 3..14. Requirement 3 
eliminates candidates that are not divisible by (one 
of) 2,5,7, or 11, leaving only 4,5,7,10,11, and 14. Re- 
quirement 4 reduces the final list of candidates to 4,5, 
and 7. 

Of course, the chief benefits of the cyclic 
scheduling model are timing predictability and sim- 
plicity. Deadlines can be enforced within the preci- 
sion of one frame. By scheduling an action within 
a frame (or combination of frames) that lies entirely 
between the release-time and the deadline of the ac- 
tion, we can be sure the action will not be executed 
too early, and that the deadline will not be missed 
without detection. Moreover, if we have a reliable 
upper bound on the execution time of each action we 
can be assured that every process will always meet 
its deadline. 
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Implementations are particularly simple and ef- 
ficient. Actions and subactions could be explicitly in- 
terleaved either by a preprocessor or manually; alter- 
natively, the schedule could be represented by a table 
of action and subaction pointers, that is interpreted 
by the executive. In either case, context-switching 
at run-time is very fast. Another benefit is that the 
schedule can be constructed o enforce resource and 
precedence constramts, mclu d. mg exclusive access to 
shared resources, without the risk of deadlock or un- 
predictable delays. 

These virtues, however, must be weighed 
against a number of problems, complexities, and dis- 
advantages, that are discussed next. 
2.2 Issues and Problems 

One major task involved in the cycle executive 
approach to controlling periodic processes is to pro- 
duce a schedule. Assuming that we are given major 
and minor cycle times, a set of periodic processes each 
characterized by a (c, p, d) triple, and a breakdown 
of process actions into scheduling blocks with their 
execution times, the problem is to generate an inter- 
leaving of the process actions or subactions to meet 
their deadline and period constraints. This prob- 
lem is known to be NP-hard for one processor, which 
means that in the worst case an exponential amount 
of work appears necessary to determine whether a fea- 
sible schedule exists. (Non-preemptive scheduling is 
related to the bin-packing problem, and is discussed 
in [12].) Fortunately, if we do not insist on optimality, 
practical cases can be scheduled using heuristics. 

First, it should be noted that the existence of 
a schedule requires that the processor utilization, de- 
fined as the sum of the ratios c/p over all processes, 
must be less than or equal to 1. One useful scheduling 
algorithm is the rate monotonic one; this preemptive 
algorithm assigns static priorities to processes based 
on their periods - the shorter the period the higher 
the priority. In a classic paper, [15] show that in 
the case when deadlines are identical to periods this 
algorithm will produce a feasible schedule whenever 
one exists based on static priorities. Furthermore, a 
schedule always exists if processor utilization is less 
than approximately 0.693 (In 2). Note that this al- 
gorithm does not use any a priori division of actions 
into subactions. However, the relevant heuristic for 
our purposes is that one should try to fit actions and 
subactions into a schedule starting with that subset 
having the shortest periods. 

A second preemptive scheduling result, that is 
more general, is the optimality of the earliest dead- 
line scheduling algorithms [9]. This is a dynamic pol- 
icy that always selects that ready process with the 
nearest deadline; it is optimal in that it will always 
produce a schedule if one exists. The obvious and 
useful heuristic for producing a cyclic schedule is to 
try to schedule those actions or subactions in earliest 
deadline order. In the example schedule of Section 
2.1, the actions and subactions appear according to 
both a rate monotonic and earliest deadline for each 
frame; processor utilization is (l/10 + 3/10 + 2/20 
+ 8/20) = 0.9. 
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A principal reason that the above results are not 
used directly is that they require processes be pre- 
emptible at arbitrary points, rather than at points 
corresponding to subaction completions. Conse- 
quently, the implementation of the schedule, i.e. the 
executive, would need a more complex timing mecha- 
nism to trigger the next process to be resumed and a 
more complex context-switching mechanism for sav- 
ing and restoring process states. The result may 
be too much execution overhead for real-time perfor- 
mance. Moreover, arbitrary preemption may not be 
acceptable due to synchronization and resource man- 
agement requirements. 

Scheduling becomes more complicated if one in- 
cludes the additional constraints due to possible re- 
source contention among processes or due to syn- 
chronization requirements. These constraints impose 
restrictions on the order of interleaving actions and 
subactions among processes. Common single-unit re- 
source sharin , 
tions, can be % 

typically implemented by critical sec- 
andled simply by definin 

section as an indivisible subaction [ll . ‘3 
each critical 

An exam- 
ple of a heuristic technique that appears practical for 
tasks with resource constraints is given in [22]. 

Another difficulty is splitting actions into sub- 
actions, i.e., determining the scheduling blocks for 
each periodic process. Almost always, this is done 
manually, based on natural “regions” of code such 
as critical sections or in terms of functional units, 
e.g. [6]. In principle, a compiler could also produce 
scheduling units, for example, by defining a “basic 
block” as a subaction as in [lo]. In both cases, manual 
and automatic generation of scheduling units, there 
remains the very difficult job of predicting the execu- 
tion time of a subaction, 

Timing predictabrhty for computer programs is 
still very much a glimmer of hope for the future, 
rather than a reality. Measurements usually produce 
average case behaviors, analysis techniques are only 
just beginning to be developed for worst case results, 
e.g. [20], and code simulators that attempt to fol- 
low worst case paths are still considered research, e.g. 
[17]. Because of this state of affairs, predictions for 
action execution times (the c component of the peri- 
odic process characterization) and for subaction ex- 
ecution times are at best approximations, and often 
optimistic ones. Errors in timing estimates may cause 
frtrme overruns, and are the reason that overruns oc- 

The response to a frame overrun varies, accord- 
ing to the requirements of the application. Most of- 
ten, the execution of the (minor) schedule for the 
frame is simply terminated, and execution of the 
schedule for the next frame is begun. In certain cases 
it may also be acceptable to suspend computation of 
the overrun minor schedule and complete it later as 
background, or to complete the minor schedule, push- 
ing back the start of the next minor schedule past the 
beginning of the next frame. It is common practice to 
log overruns, and if the number of consecutive over- 
runs exceeds some preset threshold a fault recovery 
routine may be called. 

Mode changes also present some difficult prob- 



lems. One question is when to make a mode change. 
Possibilities include changing immediately upon re- 
ceipt of the corresponding event (thereby interrupt- 
ing the current slice), doing it at the end of the cur- 
rent action or subaction, changing at the end of the 
current frame, or waiting until the completion of the 
major cycle. In any case, the mode transition may 
require special processing to clean up or reinitialize 
certain variables. The latter amounti more or less to 
“restarting” some processes. 

A final issue relates to the level of program- 
ming implied by the cyclic executive approach. Be- 
cause of the need for timing predictability, interleav- 
ing of actions from independent processes, and pre- 
run time scheduling, software construction has been 
a low-level activity. This appears incompatible with 
the more abstract process-oriented concurrent pro- 
gramming paradigm implemented by languages such 
as Ada. However, the cyclic executive technique may 
not be inherently incompatible with high-level pro- 
gramming so much as that it is incompatible with 
Ada’s model of concurrency. For example, new tools 
are being developed that aim to automatically gen- 
erate cyclic schedules from a high-level graphic rep- 
resentation of a system design. There has been some 
success in adapting such tools to generate Ada code, 
using the pure procedural subset of Ada as a lower- 
level implementation language.3 

We have been implicitly assuming a single- 
processor execution environment. Though produc- 
ing optimal schedules for multiple processors is more 
difficult than for a single processor, the cyclic exec- 
utive model can be successfully adapted to shared- 
memory multiprocessor systems and to distributed 
systems [6, 141; in fact, the synchronous discipline it 
imposes can simplify many of the problems that arise 
with such systems, such as achieving consensus. 

We have also so far addressed only periodic pro- 
cesses, ignoring the other main constituent of real- 
time software; i.e., sporadic (also called aperiodic or 
event-driven) processes. One standard method for 
treating these in the cyclic executive model is to 
translate each sporadic process into an equivalent pe- 
riodic process based on the worst case frequency of 
events or interrupts. One then prepares a schedule 
with the equivalent periodic processes included. If a 
particular frame includes the start action or subac- 
tion of an equivalent periodic process, then the cyclic 
executive makes a run-time test at the time of initia- 
tion of the frame to determine whether or not the cor- 
responding sporadic process has been triggered. One 
translation scheme is-derived in [18], wherethe equiv- 
alent periodic process P has the same execution time 
c as the corresponding sporadic process Q, a deadline 
equal to Q’s execution time, and a period 

p = minimum(ds - c + 1, ps) 

where ds is the deadline ofQandpsis 
time between successive triggers of Q. 

the minimum 

30ne example of such a software generation tool that has 
been adapted to Ada is “Autocode”, a product of Integrated 
Systems, Inc. of Santa Clara, CA. 

The above method may be too pessimistic, re- 
sulting in poor processor utilization. While it does 
indeed handle the worst case scenario where all spo- 
radic processes are triggered simultaneously by max- 
imum frequency bursts of events, the probability of 
this situation occurring may be vanishingly small. An 
alternate method is to allocate some smaller amount 
of slack time in each minor cycle for possible sporadic 
processes and to rely on the frame overrun mecha- 
nisms for event overloads. 

3 CYCLIC EXECUTIVES IN ADA.: 
Basic Solutions and Difficulties 

3.1 Relevant Ada Tasking Features 

rent 
Ada provides a fairly general notion of concur- 

process, which is called a “task” ]2] . Though 
space does not permit a complete disc&on of Ada 
tasking here, we will review those concepts that are 
most germane to the topic of this paper. 

In contrast to the paradigm of deterministic 
clock-driven scheduling behind the cyclic executive, 
Ada’s tasking system is based on a nondeterminis- 
tic event-driven scheduling model. This is a serious 
problem for designers of real-time systems who want 
to use Ada. Some people have suggested that real- 
time systems designers must change their methodol- 
ogy in order to use nondeterministic scheduling. This 
may be advisable for some applications, but not for 
many hard real-time applications, for example, those 
where hardware interfaces impose tight deadlines and 
precise timing requirements. Moreover, synchronism 
often is a necessary assumption in reducing difficult 
mathematical problems to manageable proportions. 
Thus, if it comes to a conflict between Ada and de- 
terministic scheduling, Ada may lose. 

An Ada task is not ordinarily periodic; it ex- 
ecutes indefinitely, subject to its own internal logic. 
The Ada Reference Manual [2] describes each task 
as executing on its own virtual processor. If, as is 
normally the case, several tasks need to share one 
physical processor, their executions are implicitly in- 
terleaved in some (unspecified) fashion by the Ada 
run-time system. 

The only direct means of controlling task timing 
is the delay statement, which allows a task to sus- 
pend its own execution for a specified duration. The 
timing of a task may also be controlled, indirectly, 
through a rendezvous with a task of known timing. 
For a rendezvous to take place one task must call an 
entry of another task, and the other task must execute 
an accept statement for that entry. Whichever task 
attempts to rendezvous first waits for the other task 
to execute the complementary statement, at which 
time the rendezvous begins. During the rendezvous, 
the calling task waits while the accepting task may 
execute an action. 

A hardware interrupt is handled as a special 
case of a rendezvous. The-hardware device is viewed 
as the caller and the handler as the acceptor. Thus, 
if there exists a hardware timer capable of generating 
interrupts it can be used to control the timing of a 
task. 

There 
itly causing 

are two mechanisms in Ada for explic- 
a task to abandon its normal execution 
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path. First, there is abortion. A task may be aborted 
by another task or itself using the abort statement. 
Second, there is the exception facility of the language. 
Examples and evaluations of all of the above features 
are presented below. 

3.2 USING THE DELAY STATEMENT 
3.2.1 Naive Solutions 

At first glance, there seems to be a very sim- 
ple and straightforward way of implementing periodic 
processes as Ada tasks, using a delay statement. In 
particular, page 9-12 of the Ada Reference Manual 
suggests the following. (We illustrate with the same 
set of periodic processes and schedule as the example 
of Section 2.1.) 

task CYCLIC_EXECIJTIVE_l; 

task body CYCLJC_EXECDTIVE_1 is 
use CALEIDAB; 
INTERVAL: constant:= 0.01; 
IEXT_TIHE: TIHE:= CLOCK + IITEILVAL; 
FBAHE_lLlHBEB: IlTEGW:= 1; 

begin loop delay IHT_TIHE - CLOCK; 
FBME_HlIHBEB:=@BAHB_IDHBER+I) mod 2; 
case FBAHE_IDHBERis 
when D=> A; B; C; Di; 
when l=> A; 8; D2; 
end cas*; 
IEXT_TIIIE:= IEXT_TIHE + IITERVAL; 
if CLOCDIEXT_TIHE 
then EAIDLE_FSUHE_OVERRUI; end if; 

end loop; 
end CYCLIC_EXECDTIVE_1; 

In this example the function CLOCK, defined in 
the standard package CALENDAR, is used to calcu- 
late the delay required to schedule the next execution 
of the task in order achieve periodic execution. The 
constant INTERVAL is the desired period, which is 
the minor cycle time of the schedule. 

Alternatively, the schedule could be table- 
driven. Instead of explicitly interleaving the periodic 
process actions in the executive code, we can store the 
schedule in a table that is interpreted by the cyclic 
executive [21]. 

These apparent solutions offer a clean abstract 
algorithmic description of the cyclic executive archi- 
tecture. However, they have a number of more or less 
serious problems that make them unsatisfactory for 
hard real-time applications. Some of these problems 
arise because the scheduling task runs concurrently 
with the other system activities, such as background 
tasks. 
3.2.2 Problems with Ada Semantics and Performance 

The main difficulty is the accuracy and pre- 
dictability of timing. The delay statement does not 
provide any upper bound on the amount of time a 
task may be delayed. The Ada Reference Manual 
says only that the execution of a task that executes 
a delay statement is suspended “for at least the du- 
ration specified”. Some attempt has been made to 
compensate for this in the way the delay is computed 
in the above code. In fact, using this technique, the 

Reference Manual says: “... the interval between two 
successive interactions is only approximate. However, 
there will be no cumulative drift as long as the du- 
ration of each iteration is (sufficiently) less than IN- 
TERVAL” (page 9-12 of [2]). There remains the prob- 
lem of essentially unlimited ‘Sitter” - i.e., variation 
in the interval between executions of the action. In 
the case that the average duration of each iteration 
is greater than INTERVAL, there will also be cumu- 
lative drift. If there is a frame overrun, it is not de- 
tected until after the frame has completed. 

Purchasers of Ada compilers intended for real- 
time applications are insisting (successfully) on 
stronger semantics for the delay statement. Specif- 
ically, they are requiring that the delay be imple- 
mented preemptively, with some known accuracy. 
Thus, there is some implementation-defined value, 
EPSILON, defined such that a task executing “de- 
lay D;” is guaranteed to be released (awakened) so 
that it is again eligible for execution within D + EP- 
SILON seconds 4. This interpretation is also likely 
to be officially incorporated in the next revision of 
the Ada language Standard. It does reduce the prob- 
lem of jitter, provided the delayed process is able to 
preempt the CPU when it is released. 

Since Ada allows static priorities to be assigned 
to tasks, whether or not a delayed task can resume 
execution as soon as it becomes eligible depends on 
the priority of the delayed task relative to other tasks 
that may be eligible for execution at the same time. 
No matter how priorities are assigned to tasks, if there 
are several tasks with relatively prime periods there 
will be times that a task “wakin up” from a delay 
will need to wait for another tas to relinquish the & 
CPU - i.e., there will be some jitter. Predicting jitter 
for a periodic task thus depends on complete knowl- 
edge of the activities of all other tasks of equal or 
higher priority. 

Even if the delayed task has higher priority than 
all other tasks, it will not resume execution immedi- 
ately if the Ada run-time environment is in a criti- 
cal section. This was a fairly serious problem in the 
early Ada implementations. Complex operations per- 
formed by the Ada run-time support system, such 
as task creation and termination, can be very time- 
consuming; if these are implemented as monolithic 
critical sections, they can add significantly to delays, 
in an unpredictable fashion. Some of the more recent 
implemented and proposed Ada run-time systems try 
to keep critical sections short by dividing up these 
longer operations, but they cannot eliminate the crit- 
ical sections entirely. 

Another problem area is with computational 
overhead, due to the generality of the Ada task- 
ing features employed. In our example above, over- 
head comes from several sources: (1) the type TIME 
will probably require a 64 bit representation to meet 
Ada’s requirements, so that the arithmetic used to 
calculate the next delay is rather expensive; (2) the 

‘A formal analysis of how this kind of delay statement se- 
mantics makes it possible to reason about higher-level language 
software for controlling periodic processes is presented in [20]. 
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function CLOCK is likely to be expensive, either be- 
cause it involves an I/O operation or because there 
must be mutual exclusion between the asynchronous 
operations of fetching the (64-bit) clock value and 
updating the clock; (3) the delay statement, if im- 
plemented in the most accurate way, will involve in- 
serting the task into a delay-queue (ordered by time), 
possibly resetting a hardware timer, switching to an- 
other task, and eventually switching back. Even the 
simple use of the rendezvous feature, for example in 
a table-driven implementation of the executive, can 
incur significant overhead. The large size and unpre- 
dictable nature of these overheads has been demon- 
strated in the experimental study of several Ada com- 
pilers reported in [8]. 

Another difficulty results from the uncertain se- 
mantic relationship between the delay statement and 
CLOCK function. Presumably the calendar clock will 
need to be adjusted occasionally, to keep the system 
time synchronized with the rest of the world. Ada 
does not define what, if anything, happens to any 
pending delays when this happens. The Ada speci- 
fication also omits any definition of the accuracy of 
the TIME value returned by CLOCK; consequently, 
there is no guarantee that meeting a constraint on 
TIME will come close to meeting the same constraint 
on real-time (where, for example, real-time is defined 
by the National Bureau of Standards “clock”). 

3.3 Using an Interrupt from a Hardware Clock 

A second way of implementing periodic ex- 
ecution in Ada is to make use of periodic inter- 
rupts generated by hardware timers. Here, machine- 
independence is sacrificed for more precise control 
over timing. For example, if TIMER’address is the 
address associated with a regular interrupt with pe- 
riod TICK, the following would work: 

task CYCLIC_EXECUTIVE_2 is 
entry TIXER_IJTERRlJPT; 

for TII¶ER_IJTERRUPT~address use at TIMERJaddress; 
end CYCLIC-EXECUTIVE_2; 

task body CYCLIC_EXECUTIVE_2 is 
FRAIIE_JU?IBER: IJTEGER:= 1; 

begin loop accept TIH!ZR_IJTERIlUPT; 

FRAIf~JUHBER:=(FRAHE_JURBER+1) mod 2; 

case FRAHE_JUHBER is 
when O=> A; B; C; Dl; 

when l=> A; B; D2; 

end case; 
end loop; 

end CYCLIC_EXECUTIVE_S; 

Presumably the arrival of the interrupt will be 
as accurate as the hardware supports. However, if 
a TIMER- INTERRUPT arrives while CYCLIC_- 
EXECUTIVE-2 is executing, the interrupt will be 
blocked, according to Ada semantics. The language 
does not specify whether an interrupt arriving during 
this time is queued or lost. If the interrupt is lost, 
there is a serious problem, since an entire minor cy- 
cle will be skipped. If it is buffered, the problem may 
be less serious; the next frame will be started as soon 

as this one completes. Unfortunately, if the condi- 
tion causing the overrun is persistent, the schedule 
will drift. In either case, the result may be unsatis- 
fat tory. 

This problem can be circumvented by splitting 
the action into a separate task from the handling of 
the interrupt, in such a way that the interrupt is al- 
ways enabled. 

task CYCLIC-EXECUTIVE-3 is -- the task that 
-- controls timing 

entry TI~ER_IJTERRUPT; 

for TIXER_IITERRUPT~address use at TIHER'address; 
pragma PRIORITY(SYSTM. PRIORITY'last); 

end CYCLIC_EXECUTIVE_3; 

task ACTIOI is -- the task that does the work 

entry JEXT_FRAHE; 
end ACTIOJ; 

task body CYCLIC_EXECUTIVE_J is 

begin loop accept TIHER_IJTERRUPT; 

select ACTIOJ.JEXT_FRAHE; 

else HAJDLE_FRARE_OVERRUI; 
end select; 

end loop; 

end CYCLIC_EXECUTIVE_3; 

task body ACT101 is 

FRAHE_JU?IBER: IJTEGER:=i; 

begin loop accept JEXT_FRAHE; 
FRAHE_JUHBER:=(FRAHE_JUHBER+l) mod 2; 
case FRAHE_JUHBER is 

when O=> A; B; C; Dl; 
when l=> A; B; D2; 
end case; 

end loop; 

end ACTIOJ; 

This approach is proposed and described in 
more detail in [16], though Ada tasking has under- 
gone changes since that paper was published, render- 
ing some details obsolete. A more recent and more 
complete case study can be found in [13]. 

All solutions based on a timer interrupt re- 
quire that a hardware timer be available - one that 
is not already in use by the standard Ada run-time 
environment. Since many Ada implementations use 
one timer to implement standard delays and another 
to implement CALENDAR.CLOCK, it is likely that 
there may be none left. Finally, few compilers to- 
day provide an efficient implementation of interrupt 
entries, and some do not support them at all. The 
solution above may therefore not be feasible. 

4 MODE CHANGES 
A cyclic executive can also be coded to support 

mode changes. As an example, consider a two mode 
system with mode 0 controlling the four periodic pro- 
cesses of our example and mode 1 controlling another 
set. For simplicity, we will assume that the frame 
sizes (minor cycle times) in both modes are identi- 
cal, and that modes change only on frame bound- 
aries. Doing mode changes at times other than frame 
boundaries is similar to the problem of detecting and 
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in Section 5, and 

HODE: HODES; pragma SEARED0IODE); 
IEUJWDES: HODES; pra(pa SEAREDtSEG_HODE); 
HODE_CEAIGED: BOOLBAI; pra(ppa SWlED(INlDE_CEMGED); 

task HODE_COITRDLLERis 
entq suxTCE; 
for SGITCB uee at . . . . -- some input device 

end HODE_COITEOLL.EB; 

task body EODE_COITBOLLBR is 

begin loop accept SUXTCH do 
if MODE=0 
then IlW_HODE:=i; 
else GF.W_HODE:=O; end 
HODE_CEAIGED:-true; 
end WITCH; 

end loop; 
end HODE_CO~TROLLEIl; 

if; 

task body CYCLIC_EXECUTIVE_4 is 
begin loop accept TXHELIITERBUPT; 

if HODE_CBAIGED 
then )PlDE_CEAIGED := FUSE; 

HODE := IEU_HODE; end if; 
caeo IDDE ir 
when 0 => ACTIOI_I¶ODE_O.IEXT_FBAHE; 

when 1 => ACTIOI_IIODE_1.IEXT_FllAEE; 
sndcase; 

end loop; 
end CYCLIC_EXECUTIVE_4; 

task body ACTIOI_HOD~O is 
begin -- the sam code as ACT101 of Section 3.3 except 

-- that FBAHE_IUHBEB is reset if HODE_CEAIGED. 
end ACTIOI_HODE_O; 

One special problem related to mode-changing 
concerns background tasks. In typical applications 
a mode change will involve restarting certain back- 
ground tasks associated with the new mode and may 
require adjusting the relative allocation of processor 
cycles among the background tasks. Ada provides no 
way of doing this. 

The main weakness of the above solution is 
that frame overruns are not detected. This could 
be accomplished by using the code of CYCLIC-- 
EXECUTIVE- 3 and moving the mode change check- 
ing and case analysis into a single ACTION task 
that contains separate sections each on ACTION_- 
MODE_ 0 and ACTION-MODE_ 1 processing. 

5 HANDLING FRAME OVERRUNS 
How a frame overrun should be handled often 

depends on the application., and sometimes the indi- 
vidual frame. One policy 1s to simply log the over- 
run. This is relatively simple to code in Ada, given 
that the overrun is detected. Other policies, such 
as terminating the offending frame and restarting it 
at its next scheduled minor cycle or suspending the 
offending frame and resuming it at some later con- 
venient time, are much harder, requiring “erroneous” 
Ada programming. 

The fundamental problem in treating frame 

overruns using suspension or termination policies is 
that one task (the one that detects the timing fault) 
must be able to asynchronously alter the control flow 
of another task (the one which has overrun its alloted 
time), so that it restarts at a known point. There 
are additional difhculties in properly suspending the 
offending task until it is scheduled again and also 
in doing these activities without undue performance 
penalties. (These problems also arise in implement- 
ing mode changes.) 

Within standard Ada, two possible mechanisms 
are available for terminatin 

% 
frames; these are abor- 

tion and exceptions. We wi consider abortion first. 

5.1 Abortion 
Abortion does not provide an adequate solu- 

tion, unless the compiler performs several optimiza- 
tions. Task abortion is slow, in general, due primarily 
to complications introduced by pending rendezvous 
and activations, and by families of dependent tasks. 
This cost can be reduced for very simple tasks, though 
compilers do not presently bother. A second problem 
is that an aborted task cannot be restarted; in par- 
ticular, it is no longer callable. The closest thing to 
restarting such a task is to create a new task of the 
same type. Because the new task is not the same task 
as the aborted one, any tasks previously in communi- 
cation via rendezvous with the aborted task will need 
to be informed of the replacement task’s identity. 

One way to avoid this problem is to make the 
abortable task accessible via an access variable, as 
follows: 

task type ACTIOIis -- the task that does the work 

entry IEXT,FBAHE; 
end ACTIOI; 

type ACCESS_AcTIOI is access ACTIOI; 

CDBBEIT_ACTIOI: ACCEsS_ACTIOI:= new ACTIOI; 

task body CYCLIC_EXECUTIVE_S is 
begin loop accept TIHEB_IITZBBDPT; 

select CUBBEIT_ACTIOI.IEXT_FBAME; 
else abort CURREIT_ACTIOI; 

CUBBEIT_ACTIOI:= new ACTIOI; 
and selact; 

and loop; 
and CYCLIC_EXECUTIVE_C; 

Unfortunately this solution is implementation- 
dependent. It requires that this special case of abor- 
tion and creation of a new task be done more quickly 
than can be done for the general case. It also is likely 
to exhaust memory, since it would be very difficult 
for an implementatron to determine that the storage 
of the terminated task could be reused 5. This is a 
common complaint about existing Ada implementa- 
tions. 

An unavoidable defect is that any tasks with 
pending entry calls for the aborted task will have 
TASKING-ERROR raised in them, rather than hav- 
ing their calls transferred to the replacement task. 

5UNCHECKED-DEALLOCATION isdefinedtohaveno 

effect for tasks. 
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Also the aborted task cannot pass any state informa- 
tion on to the replacement task except through global 
variables. 

5.2 Exceptions 
In the 1980 version of the Ada language, each 

task had an attribute, ‘failure, which could be raised 
in that task by another task [l]. This feature was 
removed in 1983 when the current version of the Ada 
language standard was established. It appears the 
reason for this change was the belief that abortion 
provided an adequate substitute. If still present, this 
feature could be used to cut off the execution of tasks 
which overrun their frames, as illustrated below: 

task body CYCLIC_EXECUTIVE_6 is 
begin loop accept TIHER_IITERRUPT; 

select ACTIOI.IEIT_FRAME; 
else raise ACTIOI'failnre; 

end select; 
end loop; 

end CYCLIC_EXECUTIVE_G; 

task body ACT101 is 
FRAHE_ILMBER: IITECER:= 1; 

begin loop accept IEXTJRAHE; 
begin F~nE_IUIIBER:=(~I_~BER+l) mod 2; 

case FRA.HE_IUMBER is 
when O=> A; B; C; Dl; 
when l=> A; B; D2; 
end case; 

exception when others=> RECUVER_FROH_OVERRUI; 
end; 

end loop; 
end ACTIOI; 

Of course, the attribute ‘failure is no longer part 
of the Ada standard. An implementation is free to 
support it, however, just as an implementation is free 
to support the other useful tasking features dropped 
from earlier versions of Ada (e.g., changeable priori- 
ties, and predefined generics for semaphores and sig- 
nals). 

Lacking this feature, a programmer can at- 
tempt to achieve the same effect. One somewhat 
ad hoc technique, reported by [19], makes indirect 
use of ACCESS-CHECK to enable one task to raise 
an exception (CONSTRAINT_ERROR) in another. 
The basic idea is for the subject task (e.g. ACTION 
above) to access all its data via a single global access 
variable, say DATA. If another task (e.g. CYCLIC_- 
EXECUTIVE-6 above) detects that the subject task 
has exceeded its time slot, it sets DATA to the value 
“null”. The next attempt to dereference DATA will 
result in CONSTRAINT_ERROR being raised. Our 
example may then be coded: 

DATA: ACCESS-DATA:= new DATA-RECORD; 
TW: ACCESS-DATA; 

task body CYCLIC-EXECUTIVE-7 is 
begin loop accept TIHER_IITERRUPT; 

select ACTIOI.IEXT_FRME; 
else TRIP:= DATA; DATA:= null; 

end select; 

end loop; 
end CYCLIC_EXECUTIVE_7; 

task body ACT101 is 
FRAI'ULWHBER: IITEGER:= 1; 

begin loop accept IEXTJRAHE; 
begin FRAHE_IUMBER:=(FRAHE_RUMBER+l) mod 2; 

case FRAHEJUHBER is 
when O=> A; B; C; Dl; 
when l=> A; B; D2; 
end case; 

exception when others=> 
DATA:= RIP; RECOVER_FROH_OVERRUB; 

end; 
end loop; 

end ACTIOI; 

The suppositions behind this approach are that 
ACCESS-CHECK is not suppressed and that it is 
implemented economically, for example, using a hard- 
ware trap for illegal addresses. It also assumes that 
references via DATA are made very frequently in A, 
B, C, Dl, and D2. Under these (implementation- 
dependent) assumptions, this technique would work, 
at the expense of much extra indirect addressing. 

A second, less satisfactory method uses polling; 
the writer of the subject task periodically checks a 
global variable to determine whether it has permis- 
sion to proceed. When another task detects that the 
subject task has exceeded its frame time, it withdraws 
this permission by changing the value of the global 
variable. When the subject task sees that its per- 
mission is withdrawn, it raises an exception in itself, 
unwinding outward to the point where it is to wait to 
be rescheduled. This polling technique is not partic- 
ularly attractive, since it not only imposes significant 
computational overhead, but also destroys the mod- 
ular purity of the coded actions. 

So far we have only addressed the problem of 
terminating an overrun frame, so that execution can 
resume with the next scheduled frame. If we wish in- 
stead to temporarily suspend execution of the frame, 
and resume it later when there is free time, an ad- 
ditional mechanism is needed. Ada provides no such 
mechanism, short of polling; that is, the actions and 
subactions would need to have explicit voluntary sus- 
pension points interleaved within their code. Im- 
plementation of frame suspension therefore requires 
augmenting the standard Ada tasking model, as de- 
scribed in the next section. 

6 AUGMENTING ADA TASKING 
Given that programming cyclic executives in 

Ada requires use of nonportable features that go be- 
yond the standard semantics, there is a good case for 
augmenting Ada with an adequate and separate set of 
low-level tasking operations. This could be provided 
as a package; if such a package became standard it 
would promote more portable and reusable real-time 
software. One example of such a low-level tasking 
package is Lace [5, 41. We will explain some features 
of Lace, and show how they might be used. 

6.1 The Lace Package 
Tasks are identified by values of the type 
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TASK-ID. The value NULL-TASK stands for no 
task. A task can find out its own ID by calling the 
function SELF. A new task is created via a call to 
NEW-TASK. A new task is initially “held”: that is. 
it is not yet eligible for execution. It becomes eligiL 
ble for execution when some (other) task calls RE- 
LEASE. 

Normally, a processor is preemptible. That 
means that an interrupt handler can cause control of 
the processor to be transferred from its current task 
to some other task (other than an interrupt handler). 
By calling DISABLE-PREEMPTION, a task makes 
the current processor non-preemptible. Once a task 
makes its processor non-preemptible, it remains that 
way until the task calls DISPATCH. 

Interrupt handlers may call PREEMPTION_- 
OK to determine whether it is safe to preempt. 
(This attribute is set to false by DISABLE_- 
PREEMPTION.) H aving determined that it is safe, 
a handler can preempt by calling PREEMPT. 

DISPATCH makes the current processor pre- 
emptible and gives Lace a chance to switch the pro 
cessor to another task. Control is given to the highest 
priority task of those tasks that are not already exe- 
cuting on some processor and are not “held”. 

A task may hold another task so that it is no 
longer eligible for execution, via a call to HOLD. If 
the task is executing when a HOLD is invoked on it, it 
will continue executing until it is Dreemnted through 
an interrupt (assuming its proces$or is preemptib&) 
or until it calls DISPATCH. 

Lace also provides a procedure FORCE_- 
CALL(T,P). The effect is to force the task with ID T 
to call the procedure with address P at the next dis 
patching point. FORCE-CALL can be used to raise 
an exception in a task that has overrun its frame. 

6.2 Cyclic Executive Examples 
Lace features are employed to pro ram frame- 

overrun handling in the following examp e: ‘5 

FKAKE_OVEBKDK: exception; 
FRAKKJOIE: BOOLEAI; 
pragma SEAKED(FKAKE_DOIE); 

procedure KAISE_OVEKKDK is 
begin raise FKAHE_OVEKKUI; 
end BAISE_OVEKKDK; 

task body CYCLIC_EKPCUTIVE_8 is 
begin loop accept TIHEll_IKTEKKDPT do 

if FKAHE_DOIE 
then LACK.KELEASE(ACTIOI'ID) 
ebe LACE.FORCE_CALL(ACTIOI~ID, 

BAISE_OVEKKDK~address); 
end if; 
if LACB.PBKKKPTIOI_OK 
then LACE.PBKKHPT; end if; 
end TIHEK_IITKBiUJPT; 

end loop; 
end CYCLIC_EXECUTIVE_I; 

task body ACT101 is 
begin loop begin LACE.DISABLE_PKEEHPTIOI; 

LACE.HOLDW3.F); 

This solution would work for a single processor, 
but Lace was designed also to permit a multiproces- 
sor implementation. In that context we do not know 
how to implement FORCE-CALL without waiting, 
so a call cannot be forced directly by an interrupt 
handler. There is also the danger of a race in which 
ACTION finishes the frame and susnends itself be- 
tween the time the handler discovers the frame is not 
complete and the time it forces ACTION to raise an 
exception. In this case ACTION would wait until 
the next timer interrupt before the exception takes 
effect. Solving either of these problems requires wait- 
ing. Since the handler cannot wait, we need to in- 
troduce an auxiliary “enforcer” task, who can wait. 
When a handler wants to raise an exception in a task, 
it simply releases the enforcer task, which then takes 
care of the actual work of arranging for the excention 
to be raised.. 

_ _ 

In a snnilar fashion, the Lace operations can 
be used to implement restarts of background tasks, 
and suspend and resume overrun frames. The pri- 
orities of background tasks can also be adjusted via 
additional Lace operations. By selective suspensions 
and releases, the mix of background tasks can also be 
changed. 

7 CONCLUSIONS 

for 
We have 

controllinn 
presented the cyclic executive model 
real-time neriodic nrocesses. The fa- 

cilities and limitations of Ada for programming cyclic 
executive software have been discussed and demon- 
strated, and some practical techniques for circum- 
venting Ada problems have been described. 

Ada certainly was not designed to specially sup- 
port the cyclic executive paradigm. Special support 
is not necessary, so long as the standard features are 
sufficient to permit programming the kinds of peri- 
odic execution required in practical real-time appli- 
cations. As Ada. stands, the standard features are at 
best marginally sufficient for this. 
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end 

FRAHE_DOIE:=TRUE; 
LACE.DISPATCH; 
FBAHE_DOIE:=FALSE; 
FKAHK_KDXBEB:=@KAl5_KDMEXR+1) mod 2; 
case FBAHEJDHBERis 
when O=> A; B; C; Di; 
when I=> A; B; D2; 
end case; 

exception when others=> null; 
end; 

end loop; 
ACTIOI; 

When a frame overrun is detected by the inter- 
rupt handling CYCLIC- EXECUTIVE- 8, it causes 
an exception to be raised in ACTION, by forcing AC- 
TION to call a procedure which raises the exception. 
The exception causes ACTION to exit to an excep- 
tion handler, after which it loops back and starts the 
next frame. Note that it is conceivable that the ex- 
ception could be raised twice, if a second timer in- 
terrupt occurs between the time the first exception is 
raised and the time ACTION has made its way back 
around the loop into the exception-handling frame of 
the begin block. 



Using several implementation-dependent fea- 
tures, it does appear possible to achieve periodic 
execution in Ada with a reasonable degree of con- 
trol, although in an awkward way. It seems desir- 
able to concentrate machine dependent features sulll- 
cient to write a traditional cyclic executive in a single 
informally-standardized package of low-level tasking 
operations. A first step in this direction has been 
made by the ACM working group [3]. 

A more basic problem is that Ada and other 
higher-level concurrent programming languages are 
incompatible with the traditional lower level ap- 
proaches to writing and controlling periodic software 
with hard real-time constraints. Higher level lan- 
guages must have precise real-time semantics and 
real-time control features before they can be used con- 
veniently for this and other real-time programming. 
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