
1

R
ea

l-
T

im
e

Sy
st

em
s

 S
ta

ti
c-

Pr
io

ri
ty

 S
ch

ed
ul

in
g

-
 1

Ji
m

 A
nd

er
so

n

C
SC

E
 9

90
: R

ea
l-

T
im

e
Sy

st
em

s

St
at

ic
-P

ri
or

it
y

Sc
he

du
lin

g

St
ev

e
G

od
da

rd
go

dd
ar

d@
cs

e.
un

l.e
du

h
tt

p
://

w
w

w
.c

se
.u

n
l.e

d
u

/~
g

o
d

d
ar

d
/C

o
u

rs
es

/R
ea

lT
im

eS
ys

te
m

s

2

Real-Time Systems Static-Priority Scheduling - 2Jim Anderson

Static-priority Scheduling
◆ We now consider static-priority scheduling.

» Under static-priority scheduling, different jobs of a task
are assigned the same priority.

» We will assume that tasks are indexed in decreasing
priority order, i.e., Ti has higher priority than Tk if i < k.

» Notation:
• πi denotes the priority of Ti.

• Ti denotes the subset of tasks with equal or higher priority than
Ti.

• Note: In some of the papers we will read, it is assumed no two
tasks have the same priority. (Is this OK?)

3

Real-Time Systems Static-Priority Scheduling - 3Jim Anderson

Rate-monotonic Scheduling
(Liu and Layland)

Priority Definition: Tasks with smaller periods have higher priority.

Example Schedule: Three tasks, T1 = (3,0.5), T2 = (4,1), T3 = (6,2).

T3

T2

T1

4

Real-Time Systems Static-Priority Scheduling - 4Jim Anderson

Deadline-monotonic Scheduling
(Leung and Whitehead)

Priority Definition: Tasks with smaller relative deadlines have
higher priority.

Same as rate-monotonic if each task’s relative deadline equals its
period.

Example Schedule: Let’s change the RM example by giving
T2 a tighter deadline: T1 = (3,0.5), T2 = (4,1,2), T3 = (6,2).

T′3 = T3

T′2 = T1

T′1 = T2

5

Real-Time Systems Static-Priority Scheduling - 5Jim Anderson

Optimality of RM and DM
(Section 6.4 of Liu)

Theorem: Neither RM nor DM is optimal.

Proof:

Consider T1 = (2,1) and T2 = (5, 2.5).

Total utilization is one, so the system is schedulable.

However, under RM or DM, a deadline will be missed,
regardless of how we choose to (statically) prioritize
T1 and T2.

The details are left as an exercise.

6

Real-Time Systems Static-Priority Scheduling - 6Jim Anderson

Simply Periodic Systems

Definition: A system of periodic tasks is simply periodic if for every
pair of tasks Ti and Tk in the system where pi < pk, pk is an integer
multiple of pi.

Theorem 6-3: A system T of simply periodic, independent,
preemptable tasks, whose relative deadlines are at least their
periods, is schedulable on one processor according to the RM
algorithm if and only if its total utilization is at most one.

7

Real-Time Systems Static-Priority Scheduling - 7Jim Anderson

Proof of Theorem 6-3
We wish to show: U ≤ 1 ⇒ T is schedulable.

We prove the contrapositive, i.e., T is not schedulable ⇒ U > 1.

Assume T is not schedulable.

Let Ji,k be the first job to miss its deadline.

Ti

t-1 ri,k ri,k+1

this is the last “idle instant” for jobs of T1, …, Ti

8

Real-Time Systems Static-Priority Scheduling - 8Jim Anderson

Proof (Continued)
Because Ji,k missed its deadline…

the demand placed on the processor in [t-1, ri,k+1) by jobs of tasks
T1, …, Ti is greater than the available processor time in [t-1, ri,k+1].

integer.]an is periodic,simply is system theBecause :[Note

 e
p

tr

e))r,[tin released T of jobs ofnumber (the

T,...,T of jobsby)r,[tin processor on the placed demand

]r,[tin timeprocessor available

 tr

jp
1t1ki,r

i

1j
j

j

11ki,

j1ki,1-

i

1j
j

i11ki,1-

1ki,1-

11ki,

−−+

=

−+

+
=

+

+

−+

∑

∑

⋅
−

≤

⋅=

<
=

−
Thus,

9

Real-Time Systems Static-Priority Scheduling - 9Jim Anderson

Proof (Continued)

proof. thecompletes This

U.U1

i.e.,

,
p

e
1

yields tr Cancelling

.e
p

tr
 tr

 have weThus,

i

i

1j j

j

11ki,

i

1j
j

j

11ki,
11ki,

≤<

<

−

⋅
−

<−

∑

∑

=

−+

=

−+
−+

10

Real-Time Systems Static-Priority Scheduling - 10Jim Anderson

Optimality Among Fixed-Priority Algs.

Theorem 6-4: A system T of independent, preemptable periodic
tasks that are in phase and have relative deadlines at most
their respective periods can be feasibly scheduled on one
processor according to the DM algorithm whenever it can be
feasibly scheduled according to any fixed-priority algorithm.

Corollary: The RM algorithm is optimal among all fixed-priority
algorithms whenever the relative deadlines of all tasks are
proportional to their periods.

11

Real-Time Systems Static-Priority Scheduling - 11Jim Anderson

Proof of Theorem 6-4
Suppose T1, …, Ti are prioritized in accordance with DM.

Suppose Ti has a longer relative deadline than Ti+1, but Ti has a higher
priority than Ti+1.

Then, we can interchange Ti and Ti+1 and adjust the schedule
accordingly by swapping “pieces” of Ti with “pieces” of Ti+1.

Ti+2

Ti+1

Ti

12

Real-Time Systems Static-Priority Scheduling - 12Jim Anderson

Proof of Theorem 6-4
Suppose T1, …, Ti are prioritized in accordance with DM.

Suppose Ti has a longer relative deadline than Ti+1, but Ti has a higher
priority than Ti+1.

Then, we can interchange Ti and Ti+1 and adjust the schedule
accordingly by swapping “pieces” of Ti with “pieces” of Ti+1.

Ti+2

Ti

Ti+1

By induction, we can correct all such situations.

13

Real-Time Systems Static-Priority Scheduling - 13Jim Anderson

Utilization-based RM Schedulability Test
(Section 6.7 of Liu)

Theorem 6-11: [Liu and Layland] A system of n independent,
preemptable periodic tasks with relative deadlines equal to their
respective periods can be feasibly scheduled on a processor according
to the RM algorithm if its total utilization U is at most

URM(n) = n(21/n − 1)

Note that this is only a sufficient schedulability test.

14

Real-Time Systems Static-Priority Scheduling - 14Jim Anderson

URM(n) as a Function of n

n URM(n)
2 0.828
3 0.779
4 0.756
5 0.743
6 0.734
7 0.728
8 0.724
9 0.720
10 0.717
M M
∞ ln 2 ≈ 0.693

truncated to three digits

15

Real-Time Systems Static-Priority Scheduling - 15Jim Anderson

Proof Sketch for Theorem 6-11

We will assume that all priorities are distinct, i.e., p1 < p2 < … < pn.

Note: The original proof for this theorem by Liu and Layland is
incorrect. For a complete, correct proof, see Ed Overton’s M.S. thesis
on my web page. Overton’s thesis also points out where the error is
in Liu and Layland’s proof.

We will present our proof sketch in two parts:

• First, we consider the special case where pn ≤ 2p1.

• Then, we will remove this restriction.

16

Real-Time Systems Static-Priority Scheduling - 16Jim Anderson

Special Case: pn ≤ 2p1

Definition: A system is difficult-to-schedule if it is schedulable
according to the RM algorithm, but it fully utilizes the processor
for some interval of time so that any increase in the execution
time or decrease in the period of some task will make the system
unschedulable.

We seek the most difficult-to-schedule system, i.e., the system
whose utilization is smallest among all difficult-to-schedule
systems.

The proof for the special case pn ≤ 2p1 consists of four steps,
described next.

17

Real-Time Systems Static-Priority Scheduling - 17Jim Anderson

Four Steps of the Proof

◆ Step 1: Identify the phases in the most difficult-to-
schedule system.

◆ Step 2: Define the periods and execution times for
the most difficult-to-schedule system.

◆ Step 3: Show that any difficult-to-schedule system
whose parameters are not like in Step 2 has
utilization that is at least that of the most difficult-
to-schedule system.

◆ Step 4: Compute an expression for URM(n).

18

Real-Time Systems Static-Priority Scheduling - 18Jim Anderson

Aside: Critical Instants

Definition: A critical instant of a task Ti is a time instant such that:

(1) the job of Ti released at this instant has the maximum response
 time of all jobs in Ti, if the response time of every job of Ti

 is at most Di, the relative deadline of Ti, and

(2) the response time of the job released at this instant is greater
 than Di of the response time of some jobs in Ti exceeds Di.

Informally, a critical instant of Ti represents a worst-case scenario
from Ti’s standpoint.

19

Real-Time Systems Static-Priority Scheduling - 19Jim Anderson

Critical Instants in Fixed-Priority Systems

Theorem 6-5: [Liu and Layland] In a fixed-priority system where
every job completes before the next job of the same task is released,
a critical instant of any task Ti occurs when one of its job Ji,c is
released at the same time with a job of every higher priority task.

We are not saying that T1, …, Ti will all necessarily release jobs at
the same time, but if this does happen, we are claiming that the time
of release will be a critical instant for Ti.

We give a different (probably more hand-waving) proof of
Theorem 6-5 than that found in Liu.

20

Real-Time Systems Static-Priority Scheduling - 20Jim Anderson

Proof of Theorem 6-5
Consider a system such that T1, …, Ti all release jobs together at
some time instant t. Suppose t is not a critical instant for Ti, i.e.,
Ti has a job released at another time t′ that has a longer response time
than its job released at t.

Example:

T3

T2

T1

t′
T4

21

Real-Time Systems Static-Priority Scheduling - 21Jim Anderson

Proof (Continued)
Let t-1 be the latest “idle instant” for T1, …, Ti at or before t′.
Let J be Ti’s job released at t′.
Let tR denote the time instant when J completes.

Example:

T3

T2

T1

t′
T4

t-1 tR

22

Real-Time Systems Static-Priority Scheduling - 22Jim Anderson

Proof (Continued)
If we (artificially) redefine J’s release time to be t-1, then tR remains
unchanged (but J’s response time may increase).

Example:

T3

T2

T1

t′
T4

t-1 tR

23

Real-Time Systems Static-Priority Scheduling - 23Jim Anderson

Proof (Continued)
If we (artificially) redefine J’s release time to be t-1, then tR remains
unchanged (but J’s response time may increase).

Example:

T3

T2

T1

t′
T4

t-1 tR

24

Real-Time Systems Static-Priority Scheduling - 24Jim Anderson

Proof (Continued)
Starting with T1, let us “left-shift” any task whose first job is released
after t-1 so that its first job is released at t-1.

With each shift, Ti’s response time does not decrease. Why?

Example:

T3

T2

T1

t′
T4

t-1 tR

Shift over T1 ...

25

Real-Time Systems Static-Priority Scheduling - 25Jim Anderson

Proof (Continued)
Starting with T1, let us “left-shift” any task whose first job is released
after t-1 so that its first job is released at t-1.

With each shift, Ti’s response time does not decrease. Why?

Example:

T3

T2

T1

t′
T4

t-1 tR

Shift over T2 ...

26

Real-Time Systems Static-Priority Scheduling - 26Jim Anderson

Proof (Continued)
Starting with T1, let us “left-shift” any task whose first job is released
after t-1 so that its first job is released at t-1.

With each shift, Ti’s response time does not decrease. Why?

Example:

T3

T2

T1

t′
T4

t-1 tR

27

Real-Time Systems Static-Priority Scheduling - 27Jim Anderson

Proof (Continued)
We have constructed a portion of the schedule that is identical to
that which occurs at time t (when T1, …, Ti all release jobs together).

Moreover, the response time of Ti’s job released at t is at least that
of Ti’s job released at t′ .

This contradicts our assumption that Ti’s job released at t′ has a
longer response time than Ti’s job released at t.

Thus, t is a critical instant.

28

Real-Time Systems Static-Priority Scheduling - 28Jim Anderson

Step 1: Phases

◆ Back to the proof of Theorem 6-11…

◆ Recall that Step 1 is to identify the phases in the
most difficult-to-schedule system.

◆ By Theorem 6-5, we can assume that each task
in the most difficult-to-schedule system releases
its first job at time 0.

29

Real-Time Systems Static-Priority Scheduling - 29Jim Anderson

Step 2: Periods and Execution Times

◆ By Theorem 6-5, we can limit attention to the
first period of each task.

◆ We need to make sure that each task’s first job
completes by the end of its first period.

◆ We will define the system’s parameters so that
the tasks keep the processor busy from time 0
until at least pn, the end of the first period of the
lowest-priority task.

30

Real-Time Systems Static-Priority Scheduling - 30Jim Anderson

Step 2 (Continued)

Let us define ek = pk+1 − pk for k = 1, 2, …, n-1
 en = pn − 2∑ k=1,…,n-1 ek.

T1

T2

T3

Tn-1

Tn

O

31

Real-Time Systems Static-Priority Scheduling - 31Jim Anderson

Step 2 (Continued)

T1

T2

T3

Tn-1

Tn

O

Notes:
• This task system is difficult-to-schedule. (Why?)
• The processor is fully utilized up to pn.

32

Real-Time Systems Static-Priority Scheduling - 32Jim Anderson

Step 3: Showing it’s the Most D-T-S

We still need to show that the system from Step 2 is the most
difficult-to-schedule system.

We must show that other difficult-to-schedule systems have equal
or higher utilization.

Other difficult-to-schedule systems can be obtained from the one
in Step 2 by systematically increasing or decreasing the execution
times of some of the tasks.

We show that any small increase or decrease results in a utilization
that’s at least as big as that of the original task system.

(Convince yourself that this argument generalizes.)

33

Real-Time Systems Static-Priority Scheduling - 33Jim Anderson

Step 3 (Continued)

T1

T2

T3

Tn-1

Tn

O

Let’s increase the execution of some task, say T1, by ε, i.e.,
e′1 = p2 − p1 + ε = e1 + ε.

We can keep the processor busy until pn by decreasing some Tk’s,
k ≠ 1, execution time by ε:

e′k = ek − ε.

34

Real-Time Systems Static-Priority Scheduling - 34Jim Anderson

Step 3 (Continued)

T1

T2

T3

Tn-1

Tn

O

The difference in utilization is:

k1

k1

k

k

1

1

k

k

1

1

p p since 0

p

p

p

e

p

e

p

e

p

e
UU

<>

−=

−−
′

+
′

=−′

εε

35

Real-Time Systems Static-Priority Scheduling - 35Jim Anderson

Step 3 (Continued)

T1

T2

T3

Tn-1

Tn

O

Let’s decrease the execution of some task, say T1, by ε, i.e.,
e′′1 = p2 − p1 − ε.

We can keep the processor busy until pn by increasing some Tk’s,
k ≠ 1, execution time by 2ε:

e′′k = ek + 2ε.

36

Real-Time Systems Static-Priority Scheduling - 36Jim Anderson

Step 3 (Continued)

T1

T2

T3

Tn-1

Tn

O

The difference in utilization is:

1k

1k

2p p since 0

p

p

2
 UU

≤≥

−=−′′ εε

37

Real-Time Systems Static-Priority Scheduling - 37Jim Anderson

Step 4: Calculate URM(n)

).1n(2 U(n)

Thus, .2 toequal are q ratios periodadjacent 1n

 theall when minimum itsat is that U(n)find we,qfor equations theseSolving

1.n ..., 2, 1, k allfor
qqqq

2
 1

equations 1-n following

 theus gives This zero. toderivative set the and q ratio periodadjacent

each respect to with U(n)of derivative partial the take weminimum, thefind To

n.
qqq

2
qqq U(n)

Then, ./ppq Define

2. Stepin system theofn utilizatio thedenote
p

e
 Let U(n)

1/n

1/n
k1,k

k1),(k

1)(nn,
2

k1),(k3,22,1

k1,k

1)(nn,3,22,1
1)(nn,3,22,1

ikjk,

n

1k k

k

−=

−

−=−

−++++=

=

=

+

+

−+

+

−
−

=
∑

LL

L
L

38

Real-Time Systems Static-Priority Scheduling - 38Jim Anderson

Removing the pn ≤ 2p1 Restriction

Definition: The ratio qn,1 = pn/p1 is the period ratio of the system.

We have proven Theorem 6-11 only for systems with period ratios
of at most 2.

To deal with systems with period ratios larger than 2, we show the
following

(1) Corresponding to every difficult-to-schedule n-task system
 T whose period ratio is larger than 2 there is a difficult-to-
 schedule n-task system T′ whose period ratio is at most 2, and

(2) T’s utilization is at least T′’s.

39

Real-Time Systems Static-Priority Scheduling - 39Jim Anderson

Proof of (1)
We show we can transform T step-by-step to get T′.

At each step, we find a task Tk whose period is such that
lpk < pn ≤ (l +1)pk, where l is an integer that is at least 2. We modify
(only) Tk and Tn as follows.

Tk
0 pk 2pk (l-1)pk lpk

ek
…

Tn
0 pn

en
…

T′k
0 p′k = lpk

e′k = ek
…

T′n
0 p′n = pn

e′n = en + (l-1)ek

…

40

Real-Time Systems Static-Priority Scheduling - 40Jim Anderson

Proof of (1)
Convince yourself that

• The resulting system is difficult-to-schedule.
• We eventually will get a system with a period ratio of at most 2.

Tk
0 pk 2pk (l-1)pk lpk

ek
…

Tn
0 pn

en
…

T′k
0 p′k = lpk

e′k = ek
…

T′n
0 p′n = pn

e′n = en + (l-1)ek

…

41

Real-Time Systems Static-Priority Scheduling - 41Jim Anderson

Proof of (2)

It suffices to look at the difference between the utilization of the old
and new system when one of the steps in the proof of (1) is applied.

This difference is:

.pp because 0

e)1(
p

1

p

1

p

e)1(

p

e

p

e

nk

k
nk

n

k

k

k

k

k

<>

−





−=

−−−

l

l
l

l

l

This concludes the proof of (2) and (finally!) the proof of
Theorem 6-11.

42

Real-Time Systems Static-Priority Scheduling - 42Jim Anderson

Other Utilization-based Tests
◆ The book presents several other utilization-based

schedulability tests.
• Some of these tests result in higher schedulable utilizations for

certain kinds of task sets.
– For example, Theorem 6-13 considers systems in which we can partition

the tasks into subsets, where in each subset, tasks are simply periodic.

• Other of these tests allow more detail into the model.
– For example, Theorem 6-17 considers multi-frame tasks, which are

tasks where execution costs vary from job to job. (The motivation for this
was MPEG video.)

◆ You will have a better understanding of why people
are interested in utilization-based tests later, when
we talk about intractability.

43

Real-Time Systems Static-Priority Scheduling - 43Jim Anderson

Time-Demand Analysis
(Section 6.5.2 of Liu)

◆ Time-demand analysis was proposed by
Lehoczky, Sha, and Ding.

◆ TDA can be applied to produce a schedulability
test for any fixed-priority algorithm that ensures
that each job of every task completes before the
next job of that task is released.

◆ For some important task models and scheduling
algorithms, this schedulability test will be
necessary and sufficient.

44

Real-Time Systems Static-Priority Scheduling - 44Jim Anderson

Scheduling Condition
Definition: The time-demand function of the task Ti, denoted wi(t),
is defined as follows.

Theorem: A system T of periodic, independent, preemptable tasks is
schedulable on one processor by algorithm A if

 (∀i:: (∃t: 0 < t ≤ pi:: wi(t) ≤ t))
holds. This condition is also necessary for synchronous, real-world
periodic task systems and also real-world sporadic (= periodic here)
task systems.

ik

1i

1k k
ii p t 0for e

p

t
e(t)w ≤<⋅








+= ∑

−

=

Note: We are
still assuming
tasks are indexed
by priority.

For any fixed-priority algorithm A that ensures that each job of every
task completes by the time the next job of that task is released…

45

Real-Time Systems Static-Priority Scheduling - 45Jim Anderson

Sufficiency Proof
We wish to show: (∀i:: (∃t: 0 < t ≤ pi:: wi(t) ≤ t)) ⇒ T is schedulable.

We prove the contrapositive, i.e.,
T is not schedulable ⇒ (∃ i:: (∀ t: 0 < t ≤ pi:: wi(t) > t)).

Assume T is not schedulable.

Let Ji,k be the first job to miss its deadline.

Ti

t-1 ri,k ri,k+1

this is the last “idle instant” for jobs of T1, …, Ti

46

Real-Time Systems Static-Priority Scheduling - 46Jim Anderson

Proof (Continued)
Because Ji,k missed its deadline…

at all instants t in (t-1, ri,k+1], the demand placed on the processor in
[t-1, t) by jobs of tasks T1, …, Ti is greater than the available
processor time in [t-1, t].

 e
p

tt

e t)),[tin released T of jobs ofnumber (the

T,...,T of jobsby t),[tin processor on the placed demand

t],[tin timeprocessor available

 t t

i

1j
j

j

1

j1-

i

1j
j

i11-

1-

1

∑

∑

=

−

=

−

⋅










 −≤

⋅=

<
=

−

Thus, for any t in (t-1, ri,k+1],

47

Real-Time Systems Static-Priority Scheduling - 47Jim Anderson

Proof (Continued)

To recapitulate, we have, for any t in (t-1, ri,k+1],

Replacing t − t-1 by t′ in (0, ri,k+1 − t-1], we have

Because pi ≤ ri,k+1 − t-1, we have (∃ i:: (∀ t′: 0 < t′ ≤ pi:: wi(t′) > t′)).

 e
p

tt
 t t

i

1j
j

j

1
1 ∑

=

−
− ⋅











 −<−

 e
p

t
 t

i

1j
j

j
∑

=

⋅










 ′
<′

48

Real-Time Systems Static-Priority Scheduling - 48Jim Anderson

Necessity and Efficiency

◆ The condition (∀i:: (∃t: 0 < t ≤ pi:: wi(t) ≤ t)) is
necessary for
» synchronous, real-world periodic task systems, and

» real-world sporadic (= periodic here) task systems.

» Why?

◆ For a given i, we don’t really have to consider all t
in the range 0 < t ≤ pi. Two ways to avoid this:
» Iterate using “t(k+1) := wi(t(k))”, starting with a suitable t(0), and

stopping when, for some n, t(n) ≥ w(t(n)) or t(n) > pi.

» Only consider t = j⋅pk, where k = 1, 2, …, i;
 j = 1, 2, …, min(pi, Di)/pk.
• See Liu for an explanation of this.

49

Real-Time Systems Static-Priority Scheduling - 49Jim Anderson

Fixed-Priority Tasks with Arbitrary
Response Times

(Section 6.6 of Liu)

◆ The TDA scheduling condition is valid only if
each job of every task completes before the next
job of that task is released.

◆ We now consider a schedulability check due to
Lehoczky in which tasks may have relative
deadlines larger than their periods.

» Note: In this model, a task may have multiple ready
jobs. We assume they are scheduled on a FIFO basis.

50

Real-Time Systems Static-Priority Scheduling - 50Jim Anderson

Busy Intervals
Definition: A level-πi busy interval (t0, t] begins at an instant t0 when

(1) all jobs in Ti released before this instant have completed, and
(2) a job in Ti is released.

The interval ends at the first instant t after t0 when all jobs in Ti

released since t0 are complete.

Example:

Ti

t0 tBusy Interval

51

Real-Time Systems Static-Priority Scheduling - 51Jim Anderson

Busy Intervals (Continued)

◆ For any t that would qualify as the end of a
level-πi busy interval, a corresponding t0 exists.
» Why?

◆ During a level-πi busy interval, the processor
only executes tasks in Ti  other tasks can be
ignored.

◆ Definition: We say that a level-πi busy interval
is in phase if the first job of all tasks that
execute in the interval are released at the same
time.

52

Real-Time Systems Static-Priority Scheduling - 52Jim Anderson

It Ain’t So Easy …

For systems in which each task’s relative deadline is at most its period,
we argued that an upper bound on a task’s response time could be
computed by considering a “critical instant” scenario in which that
task releases a job together with all higher-priority tasks.

In other words, we just consider the first job of each task in an in-phase
system.

For many years, people just assumed this approach would work if a
task’s relative deadline could exceed its period.

Lehoczky showed that this “folk wisdom”  that only each task’s first
job must be considered  is false by means of a counterexample.

53

Real-Time Systems Static-Priority Scheduling - 53Jim Anderson

Lehoczky’s Counterexample
Consider: T1 = (70, 26), T2 = (100, 62) [Note: the book has a typo here.]

Here’s a schedule:

T1

T2

0 70 140 210 280 350 420 490 560 630 700

0 100 200 300 400 500 600 700

T2’s seven jobs have the following response times, respectively:
114, 102, 116, 104, 118, 106, 94.

Note that the first job’s response time is not the longest.

Bottom Line: We have to consider all jobs in an in-phase busy
interval.

54

Real-Time Systems Static-Priority Scheduling - 54Jim Anderson

General TDA Method
Test one task at a time starting with the highest-priority task T1 in order of decreasing
priority. For the purpose of determining whether a task Ti is schedulable, assume that
all the tasks are in phase and the first level-πi busy interval begins at time zero.

While testing whether all the jobs in Ti can meet their deadlines (i.e., whether Ti is
schedulable), consider the subset Ti of tasks with priorities πi or higher.

(i) If the first job of every task in Ti completes by the end of the first period of that
 task, check whether the first job Ji,1 in Ti meets its deadline. Ti is schedulable if
 Ji,1 completes in time. Otherwise, Ti is not schedulable.

(ii) If the first job of some task in Ti does not complete by the end of the first period
 of the task, do the following.

(a) Compute the length of the in-phase level-πi busy interval by solving the equation
 t = ∑k=1,…,i t/pkek iteratively, starting from t(1) = ∑k=1,…,i ek until t(l+1) = t(l) for
 some l ≥ 1. The solution t(l) is the length of the level-πi busy interval.

(b) Compute the maximum response times of all t(l)/pi jobs of Ti in the in-phase
 level-πi busy interval in the manner described below and determine whether
 they complete in time. Ti is schedulable if all of these jobs complete in time;
 otherwise Ti is not schedulable.

55

Real-Time Systems Static-Priority Scheduling - 55Jim Anderson

Computing Response Times

Computing the response time of Ti’s first job is almost like before.

The time demand function is defined as follows.

(t) w t 0for e
p

t
e(t)w i,1k

1i

1k k
ii,1 ≤<⋅








+= ∑

−

=

The only difference from before.

The maximum response time Wi,1 of Ji,1 is equal to the smallest t
that satisfies the equation t = wi,1(t).

Can do this computation iteratively, as describe before. (Is termination
a problem?)

56

Real-Time Systems Static-Priority Scheduling - 56Jim Anderson

Response Times (Continued)

Lemma 6-6: The maximum response time Wi,j of the j-th job of
Ti in an in-phase level-πi busy period is equal to the smallest value
of t that satisfies the equation

t = wi,j(t + (j − 1)pi) − (j − 1)pi

where

(t) w t 1)p(jfor e
p

t
je(t)w ji,ik

1i

1k k
iji, ≤<−⋅








+= ∑

−

=

The recurrence given in the lemma can be solved iteratively, as
described before. (Once again, is termination a problem?)

57

Real-Time Systems Static-Priority Scheduling - 57Jim Anderson

Example
Let’s apply Lemma 6-6 to our previous example:

T1 = (70, 26), T2 = (100, 62)

T1

T2

0 70 140 210 280 350 420 490 560 630 700

0 100 200 300 400 500 600 700

26
70

t
 62

e
p

t
e

 (t) w t

s.t. t minimum W

k

1i

1k k
2

2,1

2,1

⋅



+=

⋅







+=

=
=

∑
−

= Yes! 114

262 62

26
70

114
 62 114 ??

=
⋅+=

⋅



+=

58

Real-Time Systems Static-Priority Scheduling - 58Jim Anderson

Example (Continued)
T1 = (70, 26), T2 = (100, 62)

T1

T2

0 70 140 210 280 350 420 490 560 630 700

0 100 200 300 400 500 600 700

100 26
70

100t
 124

100 e
p

100t
e2

 p)p(t w t

s.t. t minimum W

k

1i

1k k
2

222,2

2,2

−⋅



 ++=

−⋅






 ++⋅=

−+=
=

∑
−

=

Yes! 102

100 263 124

100 26
70

202
 124 102 ??

=
−⋅+=

−⋅



+=

59

Real-Time Systems Static-Priority Scheduling - 59Jim Anderson

Example (Continued)
T1 = (70, 26), T2 = (100, 62)

T1

T2

0 70 140 210 280 350 420 490 560 630 700

0 100 200 300 400 500 600 700

200 26
70

200t
 186

200 e
p

200t
e3

 p2)p2(t w t

s.t. t minimum W

k

1i

1k k
2

222,3

2,3

−⋅



 ++=

−⋅






 ++⋅=

⋅−⋅+=
=

∑
−

=

Yes! 116

200 265 186

200 26
70

316
 186 116 ??

=
−⋅+=

−⋅



+=

60

Real-Time Systems Static-Priority Scheduling - 60Jim Anderson

Correctness of the General
Schedulability Test

The general schedulability test hinges upon the assumption that the
job with the maximum response occurs within an in-phase busy
interval.

We must confirm that this is so.

Aside: In steps (i) and (ii)-(b), the conclusion that “Ti is not
schedulable” is stated. In other words, Liu is presenting this
as a necessary and sufficient schedulability test. Why is
it OK to conclude that the test is necessary?

61

Real-Time Systems Static-Priority Scheduling - 61Jim Anderson

Correctness (Continued)
Correctness follows from several lemmas…

Lemma 6-7: Let t0 be a time instant at which a job of every task in
Ti is released. All the jobs in Ti released prior to t0 have been
completed at t0.

Proof Sketch:

Let t-1 be the beginning of the latest busy interval.

Demand created by jobs of tasks in Ti released in [t-1, t0) must be
fulfilled in [t -1, t0], or else Ui exceeds 1.

This is similar to the proof of Theorem 6-3.

Note: To reach the stated conclusion about utilization, we must avoid introducing
those nasty ceiling operators like in the proof of the original TDA schedulability
test. Why is this not a problem here?

62

Real-Time Systems Static-Priority Scheduling - 62Jim Anderson

Correctness (Continued)

Lemma 6-8: When a system of independent, preemptive periodic
tasks is scheduled on a processor according to a fixed-priority
algorithm, the time-demand function wi,1(t) of a job in Ti released
at the same time with a job in every higher priority task is given
by

(t). w t 0for e
p

t
e(t)w i,1k

1i

1k k
ii,1 ≤<⋅








+= ∑

−

=

This should be pretty obvious to you by now …

63

Real-Time Systems Static-Priority Scheduling - 63Jim Anderson

Correctness (Continued)

Theorem 6-9: The response time Wi,j of the j-th job of Ti executed
in an in-phase level-πi busy interval is no less than the response
time of the j-th job of Ti executed in any level-πi busy interval.

This is just the good old critical instant argument …

64

Real-Time Systems Static-Priority Scheduling - 64Jim Anderson

Correctness (Continued)

Lemma 6-10: The number of jobs in Ti that are executed in an
in-phase level-πi busy interval is never less than the number of
jobs in this task that are executed in a level-πi busy interval of
arbitrary phase.

Intuitively, demand on the processor is maximal for a busy
interval that is in phase.

Thus, an in-phase busy interval should never be “shorter” than
an arbitrary busy interval.

65

Real-Time Systems Static-Priority Scheduling - 65Jim Anderson

Wrapping Up

◆ Convince yourself that Lemmas 6-7 through 6-10
imply that we need only look at the jobs that
execute within an in-phase busy interval.

◆ Think carefully about necessity.
» For which task models is the schedulability test

necessary?

» For which is it not necessary?

