lme Systems

Real-T

CSCE 990

ty

10ri

Static-Pr

Scheduling

Steve Goddard

goddard@cse.unl.edu

http://iwww.cse.unl.edu/~goddard/Courses/Real TimeSystems

Static-Priority Scheduling - 1

Real-Time Systems

Jim Anderson

Static-priority Scheduling

0 We now consider static-priority scheduling.

» Under static-priority scheduling, different jobs of a ta
are assigned the same priority.

» We will assume that tasks are indexed in decreasing
priority order, i.e., Thas higher priority than,Tif i < k.
» Notation:
* 15 denotes the priority of T
* T, denotes the subset of tasks with equal or higher priority
T.
* Note: In some of the papers we will read, it is assumed no
tasks have the same priority. (Is this OK?)

Jim Anderson Real-Time Systems Static-Priority Scheduling - 2

than

two

Rate-monotonic Scheduling

(Liu and Layland)

Priority Definition: Taskswith smaller periods have higher priority.

Example Schedule: Threetasks, T, = (3,0.5), T, = (4,1), T;= (6,2).

S]] t
2 T I

R e

Jim Anderson Real-Time Systems Static-Priority Scheduling - 3

Deadline-monotonic Scheduling

(Leung and Whitehead)

Priority Definition: Tasks with smaller relative deadlines have
higher priority.

Same as rate-monotonic if each task’s relative deadline equals itg
period.

Example Schedule: Let's change the RM example by giving
T, a tighter deadline: ;7= (3,0.5), T=(4,1,2), T, = (6,2).

= AT

TIZ:TI\T m\ [P

I T\T I T\

Tr3:T3I““‘W‘T“‘W“T‘

Jim Anderson Real-Time Systems Static-Priority Scheduling - 4

Jim Anderson

Optimality of RM and DM

(Section 6.4 of Liu)

‘Theorem: Neither RM nor DM is optimal. I

Proof:
Consider T, =(2,1) and T, = (5, 2.5).
Tota utilization is one, so the system is schedulable.

However, under RM or DM, a deadline will be missed,
regardless of how we choose to (statically) prioritize
T,and T,.

The details are left as an exercise.

Real-Time Systems Static-Priority Scheduling - 5

Simply Periodic Systems

Definition: A system of periodic tasks is simply periodic if for every
pair of tasks T; and T, in the system where p, < p,, p, iS an integer
multiple of p;.

Theorem 6-3: A system T of simply periodic, independent,
preemptable tasks, whose relative deadlines are at least their
periods, is schedulable on one processor according to the RM
algorithm if and only if itstotal utilization is at most one.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 6

Proof of Theorem 6-3

Wewishtoshow: U<1 O T isschedulable.

We prove the contrapositive, i.e., T isnot schedulable 0 U > 1.
Assume T is not schedulable.

Let J, bethefirst jobto missits deadline.

1 t 4 t]
t
T -
ty lik like1

this is the last “idle instant” for jobs of,T..., T;

Jim Anderson Real-Time Systems Static-Priority Scheduling - 7

Proof (Continued)

Because J, missed its deadline...

the demand placed on the processor in [t j, r; ;) by jobs of tasks
Ty, ..., T; is greater than the available processor time jnrft,,].

Thus,
T~ Ty

=availableprocessor timein[t ,,r,,,]

< demand placed on the processor inft,,r,.,) by jobsof T,...,T;

= Z (thenumber of jobsof T, releasedin(t,, r,.,)) (&
=

<' r\,ku_tﬂ@
& e

[Note: Because the systemissimply periodic, r‘k*%l'l isaninteger.]
]

Jim Anderson Real-Time Systems Static-Priority Scheduling - 8

Jim Anderson

Proof (Continued)

Thus, wehave

i Tl Y
My — L, <§ L Lp
e+l 1 JZ pj i
Cancellingr, ., — t_; yields

1< Zi
= P
i.e,
1<U, <U.
This completesthe proof.

Real-Time Systems

Static-Priority Scheduling - 9

Optimality Among Fixed-Priority Algs.

Theorem 6-4: A system T of independent, preemptable periodic
tasks that are in phase and have relative deadlines at most

their respective periods can be feasibly scheduled on one
processor according to the DM algorithm whenever it can be
feasibly scheduled according to any fixed-priority algorithm.

Coroallary: The RM algorithm is optimal among all fixed-priority
agorithms whenever the relative deadlines of all tasks are
proportional to their periods.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 10

10

Proof of Theorem 6-4

Suppose T4, ..., T, are prioritized in accordance with DM.

Suppose jThas a longer relative deadline than, Tout T, has a higher
priority than T,;,.

Then, we can interchangednd T,, and adjust the schedule
accordingly by swapping “pieces” of; With “pieces” of T,,.

T il i ﬁ t
i l T T l T T l T T l T T l
S T e N s N S s B
i+1 | I I I
S SR s H o I O s N o R
i+2 | I I I I I I I I I I I I

Jim Anderson Real-Time Systems Static-Priority Scheduling - 11

11

Proof of Theorem 6-4

Suppose T, ..., T, are prioritized in accordance with DM.

Suppose ;Thas a longer relative deadline than,Tout T, has a higher
priority than T,;,.

Then, we can interchangednd T, and adjust the schedule
accordingly by swapping “pieces” of; With “pieces” of T,,.

S S N N i Y S Y S
L I N E E N
SO B B f] i 1
i [T \
SO B i 1
w2 T T [1 T T T 1T T T 1
By induction, we can correct all such situations.
Jim Anderson Real-Time Systems Static-Priority Scheduling - 12

12

Utilization-based RM Schedulability Test

(Section 6.7 of Liu)

Theorem 6-11: [Liu and Layland] A system of n independent,
preemptable periodic tasks with relative deadlines equal to their
respective periods can be feasibly scheduled on a processor according
to the RM algorithm if itstotal utilization U is at most

Urw(n) = n(2" - 1)

Note that thisis only asufficient schedulability test.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 13

13

Jim Anderson

Urm (n) as a Function of n

@00\1@01wa|3

=
o

| Ugu(n) truncated to three digits

0.828
0.779
0.756
0.743
0.734
0.728
0.724
0.720
0.717

In2=0.693

Real-Time Systems Static-Priority Scheduling - 14

14

Proof Sketch for Theorem 6-11

We will assume that all prioritiesaredistinct, i.e., p, <p,<... <p,.
Note: The original proof for thistheorem by Liu and Layland is
incorrect. For acomplete, correct proof, see Ed Overton’s M.S. thesis
on my web page. Overton’s thesis also points out where the error|
in Liu and Layland’s proof.

We will present our proof sketch in two parts:

« First, we consider the special case where Pp;.

* Then, we will remove this restriction.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 15

is

15

Special Case: p, < 2p,

Definition: A system is difficult-to-schedule if it is schedulable
according to the RM algorithm, but it fully utilizes the processor
for someinterval of time so that any increase in the execution
time or decrease in the period of some task will make the system
unschedulable.

We seek the most difficult-to-schedule system, i.e., the system
whose utilization is smallest among al difficult-to-schedule
systems.

The proof for the special case p, < 2p, consists of four steps,
described next.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 16

16

Four Steps of the Proof

0 Step 1: Identify the phases in the most difficult-to-
schedule system.

0 Step 2: Define the periods and execution times for
the most difficult-to-schedul e system.

0 Step 3: Show that any difficult-to-schedule system
whose parameters are not like in Step 2 has
utilization that is at least that of the most difficult-
to-schedule system.

0 Step 4: Compute an expression for Ugy,(n).

Jim Anderson Real-Time Systems Static-Priority Scheduling - 17

17

Aside: Critical Instants

Definition: A critical instant of atask T, isatimeinstant such that:

(2) thejob of T; released at this instant has the maximum response
time of al jobsin T;, if the response time of every job of T;
isat most D;, the relative deadline of T;, and

(2) the response time of thejob released at thisinstant is greater
than D; of the response time of somejobsin T; exceeds D;.

Informally, acritical instant of T; represents a worst-case scenario
from T;'s standpoint.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 18

18

Critical Instants in Fixed-Priority Systems

Theorem 6-5: [Liu and Layland] In afixed-priority system where
every job completes before the next job of the sametask is released,
acritical instant of any task T; occurs when one of itsjob J, . is
released at the same time with ajob of every higher priority task.

Wearenot saying that T, ..., T; will all necessarily release jobs at
the same time, but if this does happen, we are claiming that the 1
of release will be a critical instant for. T

We give a different (probably more hand-waving) proof of
Theorem 6-5 than that found in Liu.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 19

me

19

Example:

Ti1 H H H .

S 1 1 t
2T 1 T T T o T T T 1 T T T 1

T [] 101 t
3T I I T 1T o T 1T T T T 1T 1

T4 \t \ \’—‘\ T T T T T T] \T

Jim Anderson t Real-Time Systems Static-Priority Scheduling - 20

Proof of Theorem 6-5

Consider asystem suchthat T, ..., T, all release jobs together at
some time instant t. Suppose t is not a critical instant; foreT,

T, has a job released at another tiftbat has a longer response tim
than its job released at t.

20

Proof (Continued)

Lett, be the latest “idle instant” for ,T..., T; at or before't
Let J be Ts job released at.t
Let t; denote the time instant when J completes.

Example:
T 17 'ﬂ 1 P . P . F
T | 1 1 t
2T T T T T T T T
.1 I t
3T T T T T 1 T T T T T 1]
T4 \t \ \’—‘\ T T T T T T 1 \T
t, t tr
Jim Anderson Real-Time Systems Static-Priority Scheduling - 21

21

Proof (Continued)

If we (artificially) redefine J's release time to bg then f remains

unchanged (but J's response time may increase).

Example:

T] il il t
17 I I I l I I l I I l I l
T i - t
2T T 1T T 1 T T T | T 1 \
.1 i 1

31 [l [I I l [I I I I I
T4 \t \ \’—‘\ T T T T T] \T

t, t tg
Jim Anderson Real-Time Systems Static-Priority Scheduling - 22

22

Proof (Continued)

If we (artificially) redefine J's release time to bg then f remains

unchanged (but J's response time may increase).

Example:

1
\

Jim Anderson -1 Real-Time Systems

Static-Priority Scheduling - 23

23

Proof (Continued)

Starting with T,, let us “left-shift” any task whose first job is releasg

after t; so that its first job is released gt t

With each shift, Ts response time does not decredaty?

Example: Shift over T, ...

T i il il t
1] I I I I I I I I I I I I I
S - - t
27 I I I I I I I I I I I I I
.1 i I t
3] I I I I I I I I I I I I I
A
t, t ts
Jim Anderson Real-Time Systems Static-Priority Scheduling - 24

2d

24

Proof (Continued)

Starting with T, let us “left-shift” any task whose first job is releasg
after t; so that its first job is released gt t

With each shift, Ts response time does not decredaty?

Example: Shift over T, ...

2d

T il ﬁ il t
1] I I I I I I I I I I I I I
S - t t
27 I I I I I I I I I I I I I
Ao t t
3] I I I I I I I I I I I I I
L
t, t s
Jim Anderson Real-Time Systems Static-Priority Scheduling - 25

25

Proof (Continued)

Starting with T,, let us “left-shift” any task whose first job is releasg
after t; so that its first job is released gt t

With each shift, Ts response time does not decredaty?

2d

Example:
T il f] t
L A B B
T 1 1] t
2 T T T o o T T I T T T I 1
10 1] 0 t
3T 1 1T 1 T 1T o T 1T T 1T T [T 1
T4T\ T T \’—‘\ T T T] \T T
t, t ts
Jim Anderson Real-Time Systems Static-Priority Scheduling - 26

26

Proof (Continued)

We have constructed a portion of the schedule that isidentical to
that which occurs at timet (when T,, ..., T; all release jobs together)

Moreover, the response time qfsTjob released at t is at least that
of T/s jobreleased att

This contradicts our assumption thgsTjob released at has a
longer response time tharisTjob released at t.

Thus, tis a critical instant.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 27

27

Step 1: Phases

0 Back to the proof of Theorem 6-11...

0 Recall that Step 1 is to identify the phases in th
most difficult-to-schedule system.

0 By Theorem 6-5, we can assume that each tas
in the most difficult-to-schedule system release
its first job at time 0.

wn ~

Jim Anderson Real-Time Systems Static-Priority Scheduling - 28

28

Step 2: Periods and Execution Times

0 By Theorem 6-5, we can limit attention to the
first period of each task.

0 We need to make sure that each task’s first jol
completes by the end of its first period.

0 We will define the system’s parameters so that
the tasks keep the processor busy from time 0
until at least p the end of the first period of the
lowest-priority task.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 29

29

Step 2 (Continued)

Let us define

& =Puwi—P fork=1,2, ..,n1
ne:pn_22k:1 n-18k

T, . -
T m]
T om B
Tod] =
T |] |
Jim Anderson Real-Time Systems Static-Priority Scheduling - 30

30

Step 2 (Continued)

Notes:
« This task system is difficult-to-schedul@V hy?)
* The processor is fully utilized up tq.p

T m [
Tl] [
T, | 1 |
Jim Anderson Real-Time Systems Static-Priority Scheduling - 31

31

Step 3: Showing it's thMost D-T-S

We till need to show that the system from Step 2 is the most
difficult-to-schedule system.

We must show that other difficult-to-schedule systems have equal
or higher utilization.

Other difficult-to-schedule systems can be obtained from the one
in Step 2 by systematically increasing or decreasing the execution
times of some of the tasks.

We show that any small increase or decrease resultsin a utilization
that's at least as big as that of the original task system.

(Convince yourself that this argument generalizes.)

Jim Anderson Real-Time Systems Static-Priority Scheduling - 32

32

Step 3 (Continued)

Let's increase the execution of some task, say fye, i.e.,
€,=p,-pteE=g te
We can keep the processor busy untiby decreasing somg s,
k # 1, execution time by:
€, =q-¢

T om L]
Tn-l
T, | 1 |
Jim Anderson Real-Time Systems Static-Priority Scheduling - 33

33

Step 3 (Continued)

The differencein utilizationis U'-u=S+5% _& _&

Pr P Pr Py
-£_¢
Py Py«

>0 sincep, <py

L L]
Tn-l
T, | 1 |
Jim Anderson Real-Time Systems Static-Priority Scheduling - 34

Step 3 (Continued)

Let’s decrease the execution of some task, say Bye, i.e.,
€=l p ¢
We can keep the processor busy untiby increasing some,’B,
k # 1, execution time bye2
g =g+

T om L]
Tn-l
T, | 1 |
Jim Anderson Real-Time Systems Static-Priority Scheduling - 35

35

Step 3 (Continued)

Thedifferencein utilizationis. U"-U :Z—S—i

pk pl
20 sincep, <2p,

L L]
Tn-l
T, | 1 |
Jim Anderson Real-Time Systems Static-Priority Scheduling - 36

36

Step 4: Calculate Ug,,(n)

Let U(n)= ZS—“ denote the utilization of thesystemin Step 2.
=1 Mk

Defineqy ; = p,/p;. Then,
2
U(N) =0,y +0gp +++ + 0y T—————————N.
e o 2192 " U0

Tofind the minimum, we take the partial derivativeof U(n) with respect to each
adjacent period ratio q,.,, and set thederivativeto zero. Thisgivesusthe
following n-1equations
1——22

21932 Asnyk " Ann-ny
Solving these equationsfor g,y ., wefind that U(n) isat itsminimum when al the

foralk=1,2,..,n-1.

n - ladjacent period ratiosq,,,, areequal to 2", Thus,
u(n) =n(2"" -1).

Jim Anderson Real-Time Systems Static-Priority Scheduling - 37

37

Removing the P, < 2p, Restriction

Definition: Theratio g,, = p,/p, isthe period ratio of the system.

We have proven Theorem 6-11 only for systems with period ratios
of at most 2.

To deal with systems with period ratios larger than 2, we show the
following

(2) Corresponding to every difficult-to-schedule n-task system
T whose period ratio is larger than 2 there is a difficult-to-
schedule n-task system T' whose period ratio is at most 2, and

(2) T's utilization is at least"’s.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 38

38

Proof of (1)

We show we can transform T step-by-stepto get T'.

At each step, we find atask T, whose period is such that
Ipe < P, < (I +1)p,, wherel isan integer that isat least 2. We modify

(only) T, and T, asfollows.

&
T = = m .. = R

0 Py 2, (-Dpy 1P
T, —

0 ﬂ Pn
€ = &

T'koi .|
Py = Ipg
€,=6,+ (-1
1
n bie i
0 Pn=Pn
Jim Anderson Real-Time Systems Static-Priority Scheduling - 39

39

Proof of (1)

Convince yourself that
« The resulting system is difficult-to-schedule.

« We eventually will get a system with a period ratio of at most 2.

&
T = = m .. = R

0 Py 2, (-Dpy 1P
T, —

0 ﬂ Pn
€ =

T'koi .|
Py = Ipg
€,=8,+ (-1
1
n bie i
0 Pn=Pn
Jim Anderson Real-Time Systems Static-Priority Scheduling - 40

40

Proof of (2)

It suffices to look at the difference between the utilization of the old
and new system when one of the stepsin the proof of (1) is applied.

This differenceis:
& _& _(-De

P 1P Pn
= Ei —i§| —]_)ek
pk pn
>0 becauselp, <p,.

This concludes the proof of (2) and (finally!) the proof of
Theorem 6-11.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 41

41

Other Utilization-based Tests

0 The book presents severa other utilization-based
schedulability tests.

« Some of these tests result in higher schedulable utilizationg

certain kinds of task sets.
— For example, Theorem 6-13 considers systems in which we can par|

for

ition

the tasks into subsets, where in each subset, tasks are simply periogic.

* Other of these tests allow more detail into the model.
— For example, Theorem 6-17 considenglti-frame tasks, which are
tasks where execution costs vary from job to job. (The motivation fol
was MPEG video.)

0 You will have a better understanding of why people
areinterested in utilization-based tests later, when
wetalk about intractability.

this

Jim Anderson Real-Time Systems Static-Priority Scheduling - 42

42

Time-Demand Analysis

(Section 6.5.2 of Liu)

0 Time-demand analysis was proposed by
L ehoczky, Sha, and Ding.

0 TDA can be applied to produce a schedul ability
test for any fixed-priority algorithm that ensures
that each job of every task completes before the
next job of that task is released.

0 For some important task models and scheduling
algorithms, this schedul ability test will be
necessary and sufficient.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 43

43

Scheduling Condition

Definition: The time-demand function of the task T;, denoted w;(t),
is defined as follows.

Note: We are
=Y Note: We:
w, () =e +Zl t S}k forO<t<p,| |still assuming
= %il] tasks are indexed
by priority.

For any fixed-priority algorithm A that ensures that each job of every
task completes by the time the next job of that task is released...

Theorem: A system T of periodic, independent, preemptable tasksis
schedulable on one processor by algorithm A if

Oiz: (@:0<t=spiw(t) st)
holds. Thiscondition is also necessary for synchronous, real-world
periodic task systems and also real-world sporadic (= periodic here)
task systems.

Jim Anderson

Real-Time Systems Static-Priority Scheduling - 44

Sufficiency Proof
Wewish to show: (Oi:: (O: O<t<p::wi(t) <t)) O T isschedulable.
We prove the contrapositive, i.e.,
T isnot schedulable 0 (Oi:: (O t: 0<t<p;: wi(t) >t)).
Assume T is not schedulable.

LetJ, bethefirst job to missits deadline.

t
] t 4]
T -
ty lik like1

this is the last “idle instant” for jobs of,T..., T;

Jim Anderson Real-Time Systems Static-Priority Scheduling - 45

45

Proof (Continued)

Because J, missed its deadline...

at al instantstin (t4, r; 4], the demand placed on the processor in

[t t) by jobsof tasks T,, ..., T; is greater than the available
processor time in ff, t].

Thus, for any tin (ty, f;.l,
t-t,
=availableprocessor timein|t_,t]
< demand placed on the processor in[t ,t) by jobsof T,,..., T,

= Z (the number of jobsof T, releasedin(t,, 1)) (&
<

i -t 0
SZ Sﬁ[@,
=OpP B

Jim Anderson Real-Time Systems Static-Priority Scheduling - 46

46

Proof (Continued)

To recapitulate, we have, for any tin (t, ;4]

e

Replacingt—t, by t'in (0, r; ., —t,], we have
Ly O
o-0e
= P

Because p; <1,y — t4, wehave (Oi:: (Ot 0 <t < piwy(t') >).

Jim Anderson Real-Time Systems Static-Priority Scheduling - 47

a7

Necessity and Efficiency

0 Thecondition (Ti:: (O: 0<t< p::wy(t) <t))is
necessary for
» synchronousreal-world periodic task systems, and
» real-world_sporadi¢= periodic here) task systems.
» Why?
0 For a given i, we don’t really have to consider a
in the range 0 <4 p. Two waysto avoid this:
» lterate using %D := w(t®)”, starting with a suitablé®, and
stopping when, for some #) & w(t™) or W > p.
» Only consider t =[p,, where k=1, 2,.., |;
i=1,2, .0nin(p, D)/pO
« See Liu for an explanation of this.
Jim Anderson Real-Time Systems

Static-Priority Scheduling - 48

48

Fixed-Priority Tasks with Arbitrary
Response Times

(Section 6.6 of Liu)

0 The TDA scheduling condition isvalid only if
each job of every task completes before the next
job of that task is released.

0 We now consider a schedulability check due to
Lehoczky in which tasks may have relative
deadlines larger than their periods.

» Note: In this model, a task may have multiple ready

jobs. We assume they are scheduled on a FIFO basis.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 49

49

Busy Intervals

Definition: A level-;_busy interval (t,, t] begins at an instant t, when
(1) all jobsin T, released before this instant have completed, and
(2) ajobin T, isreleased.

Theinterval ends at the first instant t after t, when al jobsin T;

released since t, are complete.

Example:
L1 t t
f t]
T t ¢

t, «— Busy Interva—> t

Jim Anderson Real-Time Systems Static-Priority Scheduling - 50

50

Busy Intervals (Continued)

0 For any t that would qualify asthe end of a
level-Tg busy interval, a corresponding t, exists.
» Why?

0 During alevel-tg busy interval, the processor
only executestasksin T; [other tasks can be
ignored.

0 Definition: We say that alevel-1g busy interval
isin phaseif thefirst job of all tasks that
execute in theinterval are released at the same
time.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 51

51

It Ain't So Easy ...

For systems in which each task’s relative deadline is at most its pe

we argued that an upper bound on a task’s response time could be

computed by considering a “critical instant” scenario in which that
task releases a job together with all higher-priority tasks.

In other words, we just consider the first job of each task in an in-p
system.

For many years, people just assumed this approach would work if
task’s relative deadline could exceed its period.

Lehoczky showed that this “folk wisdom? that only each task’s firs
job must be consideréd is false by means of a counterexample.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 52

riod,

hase

—

52

Lehoczky’'sCounterexample

Consider: T, = (70, 26), T, = (100, 62) [Note: the book has atypo here]

Here's a schedule:

T
1
0 70 140 210 280 350 420 490 560 630 700

Al N mlml Nlmls B mls B

0 100 200 300 400 500 600 700

T,'s seven jobs have the following response times, respectively:

114, 102, 116, 104, 118, 106, 94.
Note that the first job’s response time is not the longest.

Bottom Line: We have to consider gthbs in an in-phase busy
interval.
Jim Anderson Real-Time Systems Static-Priority Scheduling - 53

53

General TDA Method

Test one task at atime starting with the highest-priority task T, in order of decreasing
priority. For the purpose of determining whether atask T; is schedulable, assume that
all the tasks are in phase and the first level-Tt busy interval begins at time zero.

While testing whether all the jobsin T; can meet their deadlines (i.e., whether T, is
schedulable), consider the subset T; of tasks with priorities 1 or higher.

(i) If thefirst job of every task in T; completes by the end of the first period of that
task, check whether thefirstjob J ; in T; meetsits deadline. T, is schedulable if
J.1 completesintime. Otherwise, T, is not schedulable.

(i) If thefirst job of some task in T; does not complete by the end of the first period
of the task, do the following.
(a) Compute the length of the in-phase level-Tg busy interval by solving the equation

somel = 1. The solution t0 isthe length of the level-T; busy interval.

(b) Compute the maximum response times of all [i/p,Jjobs of T; in the in-phase
level-g busy interval in the manner described below and determine whether
they completeintime. T, isschedulableif all of these jobs completein time;
otherwise T; is not schedulable.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 54

Computing Response Times

Computing the response time of T;’s first job is almost like before.

The time demand function is defined as follows.

wi,(t) =e +§15¥t§}k forO<t<w,,(t)
= k

?
I

‘ The only difference from before.

The maximum response time, Yf J ; is equal to the smallest t
that satisfies the equation t 5).

Can do this computation iteratively, as describe before. (Is termination

a problem?)

Jim Anderson Real-Time Systems Static-Priority Scheduling - 55

55

Response Times (Continued)

Lemma 6-6: The maximum response time W;; of the j-th job of

T, in anin-phase level-Tg, busy period is equal to the smallest value
of t that satisfies the equation

t=w;(t+ G- Dp) = (- Dp;

where

wi;(t) = je +§l|§;7§}k for j-1)p, <tsw; (1)

The recurrence given in the lemma can be solved iteratively, as
described before. (Once again, istermination a problem?)

Jim Anderson Real-Time Systems Static-Priority Scheduling - 56

56

Example

Let's apply Lemma 6-6 to our previous example:
T, = (70, 26), T = (100, 62)

o I

70 140 210 280 350 420 490 560 630 700

0
Al B slmE Hmls B lmls B
0 300 400 500 600 700

100 200
W, , =minimumt st.
" 14
7 =
t=w,, (0 7114=62+ %aje
<ot =62+2[26

2 5@3& =114 Yed
=62+ %@16

Jim Anderson Real-Time Systems Static-Priority Scheduling - 57

:e2+z1

57

Exampl e (Continued)

T, = (70, 26), T, = (100, 62)

0 70 140 210 280 350 420 490 560 630 700

Al N el llmls B e B

0 100 200 300 400 500 600 700
- [p02
= 2?102=124+ 6—100
W,, =minimumt st. %EI
t=wo,(t+p,) —p, =124+ 3[26-100
i-1 _
=2@2+Zﬂﬁ+1005:ek-1oo =102 Yed
=20 Pk O

=124+ E%ooéle—loo

Jim Anderson Real-Time Systems Static-Priority Scheduling - 58

58

Exampl e (Continued)

T,=(70, 26), T, = (100, 62)

Tl(i):|7i0—|i—|t|i—|35ioﬂf:|0—|h£|\

140 210 280 420 490 560 700

il B elmE Hmls B Hmls B

0 100 200 300 400 500 600 700
- [B16
= 22116=186+ 6— 200
W, ; =minimumtst. %EZZ
=Woq(t+20p,) =20p, =186 +5[26- 200
i1+ _
=3@2+ZD ZOOS}k—ZOO =116 Yes!
=0 P O
=186+ E%E:ze - 200
Jim Anderson Real-Time Systems Static-Priority Scheduling - 59

59

interval.

Correctness of the General

Schedul ability Test

The general schedulability test hinges upon the assumption that the
job with the maximum response occurs within an in-phase busy

We must confirm that thisis so.

Aside: In steps (i) and (ii)-(b), the conclusion that {9 not
schedulable” is stated. In other words, Liu is presenting this
as a necessary and sufficient schedulability tésty is
it OK to concludethat thetest is necessary?

Jim Anderson

Real-Time Systems Static-Priority Scheduling - 60

60

Jim Anderson Real-Time Systems Static-Priority Scheduling - 61

Correctness (Continued)

Correctness follows from several lemmas...

Lemma 6-7: Let t, be a time instant at which a job of every task in
T, is released. All the jobs ify released prior tq have been
completed atgt

Proof Sketch:
Let t, be the beginning of the latest busy interval.

Demand created by jobs of tasksTirreleased in [}, t,) must be
fulfilled in [t_;, t], or else Yexceeds 1.

This is similar to the proof of Theorem 6-3.

Note: To reach the stated conclusion about utilization, we must avoid introducing

those nasty ceiling operators like in the proof of the original TDA schedulability
test. Why isthis not a problem here?

61

Correctness (Continued)

L emma 6-8: When a system of independent, preemptive periodic
tasks is scheduled on a processor according to a fixed-priority
algorithm, the time-demand function w; ,(t) of ajob in T; released
at the same time with ajob in every higher priority task is given
by

wi,()=¢ +§1§3L§}k for0O<t<w,,(t).
= k

This should be pretty obvious to you by now ...

Jim Anderson Real-Time Systems Static-Priority Scheduling - 62

62

Correctness (Continued)

Theorem 6-9: The response time W, ; of thej-th job of T; executed
in an in-phase level-Tt busy interval is no less than the response

time of the j-th job of T; executed in any level-Tt busy interval.

This is just the good old critical instant argument ...

Jim Anderson Real-Time Systems Static-Priority Scheduling - 63

63

Correctness (Continued)

L emma 6-10: The number of jobsin T; that are executed in an
in-phase level-1; busy interval is never less than the number of
jobsin thistask that are executed in alevel-1g busy interval of
arbitrary phase.

Intuitively, demand on the processor is maximal for a busy
interval that isin phase.

Thus, an in-phase busy interval should never be “shorter” than
an arbitrary busy interval.

Jim Anderson Real-Time Systems Static-Priority Scheduling - 64

Wrapping Up

0 Convince yourself that Lemmas 6-7 through 6-10
imply that we need only look at the jobs that
execute within an in-phase busy interval.

0 Think carefully about necessity.

» For which task models is the schedulability test
necessary?

» For which is it not necessary?

Jim Anderson Real-Time Systems Static-Priority Scheduling - 65

65

