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Overview

J Part 1: Aida Project: Poem Recognition

) Part 1.1: Segmentation
J Part 1.2: Recognition

J Part 2: Document Image Quality Assessment (DIQA)
J Part 3: Zoning
J Part 4: Deep Learning

) Part 5: Five Collaboratory Projects with Library of Congress



AIDA | Objective

JExploring what more we can do with the millions of images that
represent the digitized cultural record—particularly digital images
of textual materials—and we are interested in the types of
discovery that serious attention to digital images might yield

JGenerate data about visual features from the newspaper pages
and then use those extracted features within a computational
system, such as artificial neural network



Part 1: Poem Recognition

Objectives | Identifying existence of poem in a page

Applications | metadata generation, discover-/search-ability, visualization, etc.




Poem Recognition | Workflow

Digital Page Segmentation
Newspaper
Pages

Pre-Processing

Image Snippets

Neural Network

) Numeric Feature Extraction Binary
Training

Vectors Consolidated
Snippets

Classifier Training Results ) ]
Lorang et al., DLib Magazine, 2015




Poem Recognition |Segmentation
INTUITIVE STRATEGY

I Generate page image “snippets”
 find the newspaper columns present on the page

J cut each column into a series of column snippets of a fixed
width:height ratio

) Take the snippet, determine whether it featured poetic content,
and the determine more locally where on the page the poetic
content appeared



Poem Recognition |Segmentation
HOWEVER ...

 Noticed a variety of factors influence our ability to create good
image snippets
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Poem Recognition |Segmentation

ONGOING STRATEGIES

J More sophisticated traditional image processing techniques;
Connected component analysis (CCA), Voronoi-diagram

1 Deep-learning-based approach; dhSegment, Mask-RCNN
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CCA + Voronoi-diagram dhSegment



Poem Recognition |Recognition

Which one has poem?
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Poem Recognition |Recognition | Basis of Features

Feature Extraction
o Left column width
> length of background pixels prior to the first object pixel for each row
° Right column width
> length of background pixels after the final object pixel for each row
> Row depth
° number of each sequence of continuous background pixels in each column
o Margin statistics
o computed from the list of the Left Column Widths



Poem Recognition |Recognition | Basis of Features

Feature Extraction
> Jaggedness statistic

o measures the number of background pixels after the final object pixel in
each row

o Stanza statistic

> looking for gap between stanzas using a list of Row Depths
> Row length statistic

° length of continuous sequence of object pixels



Poem Recognition |Recognition | Basis of Features
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Poem Recognition |Recognition | Basis of Features

From the Prosidanm Jonrned.
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From the Prosidanm
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Snippet pre-processing
1. Otsu’s binarization [Otsu, IEEE TSMC 1979]
2. Consolidation [Soh,
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o Performance of feature extraction could be affected by various types of noise
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ANN implementation from the WEKA Workbench [Eibe et al. 2016]

—

Output
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Part 2: Document Image Quality Assessment (DIQA)

Objectives | Measure visual quality of document image

Applications | metadata generation, image quality enhancement, etc.




DIQA |Objective

J Measure four main degradations inherent in digitized historical document images
 Analyze these measures in a large-scale dataset (i.e., Chronicling America) and interpret what they are saying

Contrast h




DIQA |Contrast, Range Effect

J Contrast in all languages is pretty consistent; nor does it change drastically over time

J Range effect, on the other hand, not only varies across the different languages, it also
changes over time for each language
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DIQA |Orientation Skew

J A more effective measure is likely to

be local skew, relative no particular
parts of the page, or other measures of
warpedness or beveled nature of the

page o

‘ Andrew Proscott rv—

The forgotten labour of digitisation. All
newspapers in the British Library were ironed

before they were microfilmed to ensure a 150
clear image. Here is a staff member ironing a

paper. The microfilm images are used in

modern digital packages, #5482 #KZ002018
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DIQA |Noisiness

Noisiness
Test Set

J Assessing effects of bleed-
through, blobs

(e.g., stains), and other non-
textual artifacts

) Defects or degradations of a
page, or of the digitization
process based on histogram
analysis—of pixels’ intensity
values—of each page




Part 3: Zoning

Objectives | Segment an image into meaningful sub-regions

Applications | Object localization, visualization, logical layout analysis, etc.




Zoning | Background

Paper-based technical document

Scan the input

Digital image

Preprocessing

Binarized image or specific data structure

Geometric layout analysis

Logical layout analysis

OCR

Table processing | Drawing vectorization

Image compression

Document Model or Interpretation

ann
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Zoning |Challenges
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Zoning | Traditional Approaches (Bottom-up)

Connected Component Analysis Rule-based Merging



Zoning | Traditional Approaches (Top-down)

Sensitive to skew

Recursive X-Y Cut

Projecti@ll Profile
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Zoning | Traditional Approaches (Hybrid)

< d

J Over-segmentation using RXYC + Merging sub- J Bottom-up merging + Top-down RXYC
regions



Zoning |State-of-the-art Approaches (Deep Learning)

J With the advent of deep learning, it has been shown that using data-driven
features, instead of hand-crafted features, is more effective

J Boundary between physical layout analysis and logical layout analysis
becomes ambiguous
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Part 4: Deep Learning

Objectives | Improve the performance of identifying existence of poem in a page

Applications | Automated poetic content collection, article type classification




Deep Learning |Background

Recall the ANN used in Aida project
Generally speaking, Deep Learning is deep structured learning
Hence, more hidden layers

Depending on the classification task, there are different models
Recognizing poems in a newspaper page is an image-related
classification
Hence, Convolutional Neural Network



Deep Learning |Convolutional Neural Network

Convolutional Neural Networks (CNN) have been shown to be
effective for image-related classification

=> LeNet [LeCun et al.] was the start of deep CNN.

=> AlexNet [Krizhevsky et al.] was inspired by LeNet, and outperformed state-
of-art by large percentage on ImageNet.

—> ResNet [He et al.] pushed CNN to a very deep model — 152 layer ResNet.

More and more document image related researches were attracted

=> Pondenkendath et al. applied ResNet to four tasks: handwritten style,
document layout, authorship classification, font identification.



Deep Learning |Convolutional Neural Network
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Deep Learning |Convolutional Neural Network
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Deep Learning | 2nd Gen Aida

CNN allows to learn feature from training process

Digital Page Segmentation Otsu binarization
Newspaper

Pages

Image Snippets

Convolutional
Neural Network .
Training Binary

Snippets

Training

Classifier Results




Deep Learning | 2nd Gen Aida

100.00%

mle7 M [e9 W resl8 M resl52

98.00% o5
96.00%
94.00%
92.00%
90.00%
88.00%
86.00%
84.00%

train

train accuracy Drecision train recall train F1 test accuracy test precision  testrecall test F1

le5 99.00% 99.58% 98.43% 98.97% 90.74% 91.31% 90.06% 90.67%

mle7 99.20% 99.58% 98.72% 99.12% 94.29% 94.61% 93.94% 94.27%
Hle9 99.80% 99.67% 100.00% 99.83% 96.56% 96.69% 96.43% 96.56% |

mresl8 97.91% 96.85% 99.05% 97.90% 95.11% 95.40% 94.83% 95.10%

M res152 92.60% 93.99% 91.09% 92.21% 94.09% 94.61% 93.51% 94.05%




Deep Learning | 1st vs. 2nd Gen Aida

2nd Gen 100.0
1st Gen | 78.23%
0.00% 20.00% 40.00% 60.00% 80.00% 100.00%
1st Gen 2nd Gen
2888% 100.00%
70.00% 80.00%
soset
40.00% 40.00%
30.00%
%8882? 20.00%
. (] 0,
50% 0.00%
’ Test Test Test Recall Test F1

Test Test Test Recall TestF1

Accuracy  Precision Accuracy  Precision

) . EChro-Am  EBurney*
BChro-Am MBurney

* Burney database is not balanced, more snippets without poetic content




Deep Learning |1st vs. 2nd Gen Aida

1 Gen AIDA Ground-Truth 1 Gen AIDA Ground-Truth
Chronicling America Database| Poem Not Poem Burney Collection Database Poem Not Poem
Poem 602 124 Poem 273 420
Predicted (35.54%)  (7.32%) Predicted (10.02%)| (15.41%)
Not Poem 245 723 Not Poem 230 1802
(14.46%) (42.68%) (8.44%) (66.13%)

Correctly predicted poem snippets: 71.07%
and not poem snippets: 85.36%

Correctly predicted poem snippets: 54.27%

and not poem snippets: 81.10%

2" Gen AIDA Ground-Truth 2" Gen AIDA Ground-Truth
Chronicling America Database| Poem [Not Poem Burney Collection Database Poem |NotPoem
Poem 822 22 Poem 304 68
. (48.52%) (1.30%) . (11.16%) (2.50%)
Predicted Predicted
Not Poem 25 825 Not Poem 199 2154
(1.48%)| (48.70%) (7.30%)| (79.05%)

Correctly predicted poem snippets: 97.05%
and not poem snippets: 97.40%

Correctly predicted poem snippets: 60.44%

and not poem snippets: 96.94%




Deep Learning | 2nd Gen Aida

2"d Gen AIDA improved poetic content classification for historical newspaper
by more than 10% comparing to 15t gen AIDA

> 2nd Gen AIDA has over 90% test accuracies on both Chronicling America and
Burney database, while 15t Gen AIDA cannot reach 80%.

2"d Gen AIDA have potentials to generate a general classifier for other
databases than the training database

o 2nd Gen AIDA has over 90% test accuracy on Burney database.

> Precision and recall of 2" Gen AIDA are lower than 90% but much higher than 1st
Gen AIDA



Part 5: Library of Congress
Project 1. Document Segmentation

Objectives | Find and localize Figure/lllustration/Cartoon presented in an image

Applications | metadata generation, discover-/search-ability, visualization, etc.




Background |State-of-the-Art CNN models

J Convolutional Neural Network (CNN) Models (deep learning)
) Classification [Dataset; Top-1 / Top-5]
12014, VGG-16 (Classification) [ImageNet; 74.4% / 91.9%]
12015, ResNet-50 (Classification) [ImageNet; 77.2% / 93.3%]
12018, ResNeXt-101 (Classification) [ImageNet; 85.1% / 97.5%]
J Segmentation [Dataset; Intersection-over-Union (loU)]
12015, U-net (Segmentation/Pixel-wise classification) [ISBI; 92.0%]

1So, we now know that CNNs achieve remarkable performances in both
classification and segmentation tasks.

J What about document images then?



Document Segmentation | Technical Details

A Training is a process of finding the optimal value weights between artificial neurons that minimizes a pre-
defined loss function

4

!
1
:
!
T e

Input e el Prediction Ground-truth
1. Convolutio : 3. Calculate per-pixel loss
sampling: understand “WHERE” it is present in the image 4. Update weights between
understand “WHAT” is present in the image neurons




Document Segmentation | Dataset

Beyond Words

) Total of 2,635 image snippets from 1,562
pages (as of 7/24/2019)
11,027 pages with single snippet
1512 pages with multiple snippets

J Issues
JInconsistency (Figure 1)
JdImprecision (Figure 2)

Figure 2. Example of imprecision. From left to

D Data |m ba |a nce ( F |g ure 3) right: (1) ground-truth (yellow: Photograph and
black: background) and (2) original image. Note

here that in the ground-truth, non-photograph-like

(e.g., texts) components are included within the

yellow rectangle region.

Figure 1. Example of inconsistency. Note that there are
more than one image snippets in the left image (i.e. input)
while there is only a single annotation in the right ground-
truth.

Number of entities

Figure 3. Number of snippets in Beyond Words. Note

here the data imbalance




Document Segmentation | Dataset

European Historical Newspapers (ENP)
) Total of 57,339 image snippets in 500 pages
) All pages have multiple snippets

J Issues
J Data imbalance
JText: 43,780
JFigure: 1,452

D L| ne-se pa rator: 1 1,896 Figure 4. Example of image (left) and ground-truth (right) from
ENP dataset. In the ground-truth, each color represents the
D Ta ble: 22 1 following components: (1) black: background, (2) red: text, (3)

green: figure, (4) blue: line-separator, and (5) yellow: table.




Document Segmentation | Experimental Results

D A U-net mOdeI trained Wlth train/eval Weighted Pre-processing Best Score
ENP datase_t shows better Model size Classes training (Normalization) | Accuracy | mloU
segmentation performance than P—

that with Beyond Words in BW 1500 vl 1: Editorial o 0s7 | o0na
terms of pixelwise-accuracy and = 1226706 | 2 e o -

loU score 3: Iilustration

JloU score is a commonly used BW 1500 v2 . _ 7Y°S N 088 | 026
metric to evaluate segmentation [10:22:20;188:22)
performance ENP_500 vl 0: Background Yes No 0.88 0.64

1: Tex 10-40-10-

JThe three issues—inconsistency, ENP 002 | 385096 2 Figwe [5:10:40;10:33) Yes 089 1064
imprecision, and data imbalance—of ENP_500_v3 3: Separator No No 0.91 0.69
Beyond Words dataset need to be ENP_500_v4 4: Table Yes 0.91 0.69
improved for better use in training *Accuracy: Pixel-wise accuracy.

*mloU: Average intersection over union.
*Normmalization: Zero mean unit variance

J Assigning different weights per class to mitigate data imbalance did not show

performance improvement

) Future Work: Explore a different way of weighting strategy to mitigate a data
imbalance problem



Document Segmentation | Potential Applications 1

) Enrich page-level metadata by
cataloging the types of visual components
presented on a page

>,

“?;':j:—.;f;
;|~‘ v )
= o -S4 ] 3

§ § 8 ¢ §
i 8 ¢ % 8 .

J Enrich collection-level metadata as well

§
i

J Visualize figures’ locations on a page

§ 8§ %8 § %

Figure 5. Segmentation result of ENP_500_v4 on Chronicling America image (sn92053240-19190805.jpg). Clockwise from top- left: (1) Input, (2) probability map for figure class, (3) detected
figures in polygon, and (4) detected figures in bounding-box. In the probability map, pixels with higher probability to belong to figure class are shown with brighter color.
Aida




Document Segmentation | Potential Applications 2
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Figure 6. Successful segmentation result of ENP_500_v4 on

book/printed material

(https://www.loc.gov/resource/rbc0001.2013rosen0051/?sp=

37).
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Figure 7. Failure segmentation result of ENP_500_v4 on

book/printed material

(https://cdn.loc.gov/service/rbc/rbc0001/2010/2010rosen007

3/0005v.jpg). Note that there is light drawing or stamps




Document Segmentation | Conclusions

J As a preliminary experiment, a state-of-the-art CNN model (i.e., U-
net) shows promising segmentation performance on ENP document
image dataset,

J There is still room for improvement with more sophisticated
training strategies (e.g., weighted training, augmentation, etc.)

J To make Beyond Words dataset more as a valuable training
resource for machine learning researchers, we need to address the
following issues:

) Consistency
) Precision of the coordinates of regions



Part 5: Library of Congress
Project 2.1. Figure/Graph Extraction

Objectives | Find and localize Figure/Graph in a document image

Applications | Graph retrieval, document segmentation based on content type




Figure/Graph Extraction | Technical Details

An FCN (U-NeXt) is used

|77 U-NeXt combines ResNeXt and U-Net
| 58 ) ResNeXt101 64x4d

‘z; J Why ResNeXt101_ 64x4d?

I”TH J Current state-of-art

roe | it J Accessible pre-trained model

[] ' |§; I Transfer learning
Bk ga;gg,m]m_.l-: J ResNeXt101_64x4d
s l I L J Number of parameters:
i [“’“] 1114.4 million & 32.8 million




Figure/Graph Extraction | Datasets

) ENP collection: European newspaper collection

J A subset used for the International Conference on Document Analysis and
Recognition competition

J Beyond Word collection: Transcribed collection
) But cannot be used for training directly ...

J Problem 1: missing figures in ground-truth
J Problem 2: inaccurate ground-truth



Figure/Graph Extraction | Datasets: ENP

Ground-

Document




Figure/Graph Extraction | Datasets: Beyond Words

GEER ™

Document Ground-




Figure/Graph Extraction | Preliminary Results

J Transfer parameters from pre-trained ResNeXt101 64x4d
J Trained on ENP dataset

Document Ground Predictio



Figure/Graph Extraction | Conclusions

J Promising preliminary results

) Potential applications
J Segmentation based on content type to increase item-level accessibility
) Retrieval of figures/graphs for further study

J Challenges
J U-NeXt still needs more iterations of training

) Preliminary training indicates that tables may be the hardest type to extract



Figure/Graph Extraction | Challenge

Document Ground Predictio .



Part 5: Library of Congress
Project 2.1. Text Extraction from Figure/Graph

Objectives | Extract texts from figure/graph

Applications | Metadata generation, OCR for figure/graph caption




Text Extraction from Figure/Graph | technical Details

EAST text detector

) EAST: Efficient and Accurate Scene Text

detector
J HyperNet + U-Net

) Detect texts in graphic images in any
direction

Why applicable?

J figures/illustrations are snippets of a
graphic region

7x7, 16, /2 353,32 —»
h

conv stage 1 3x3.32 score map
64, /2 f 1x1,32 RBOX ;
< | concat p o seomery
unpool, x2 ->| 1x1, 4 | ;
Y h 4 E ' i
‘conv stage 2\ (733,64 i textboxes |
128, /2 /i lc;:;cgf : -lxl, 1 i
unpool, x2 ! text rotation |
¥ h, A angle ‘
conv stage 3 1.3x3,128 e
M, |
Y unpool, 2 “:"—M’ 8
conv stage 4|/, A b | text quadrangle ;
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Feature extractor
stem (PVANet)

Feature-merging
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Text Extraction from Figure/Graph| preliminary Resuits

J Performance on detecting texts in newspaper

(MRS, HARRISON HEDGER - |
et figure/graph is good

Detected

Texts J Texts location is recorded

Text Lines
e 6 text lines
e {"x0": 62, "y0": 608, "x1": 135, "y1": 588, "x2": 1432

[ ]
o, g, i,

“x0
0"
0"
“x0
0"

":188, "
:331,"
116, "
" 405, "
475, "

"33,"
" 31, "
" 34, "

x1
x1
x1

" 312, "y1™:
" 423, "y1"
"1 166, "y1™
" 755, "x1": 470, "y1": 757, "x2": 47
" 756, "x1": 531, "y1™: 757, "x2": 53

31, "x2": 313,

: 30, "x2": 423,

33, "x2": 166,



Text Extraction from Figure/Graph | Conclusions

J Promising preliminary results

) Potential application
J Perform OCR on detected text regions for higher accuracy
J Extract OCR-ed words in detected text regions as metadata



Part 5: Library of Congress
Project 3. Document Type Classification

Objectives | (1) Classify a given image into one of Handwritten/Typed/Mixed type; (2)
Classify a given image into one of Scanned/Microfilmed

Applications | metadata generation, discover-/search-ability, cataloging, etc.



Document Type Classification | Technical Details

Note that we do not need up-sampling in this task,
since WHERE is not our concern

J A simple VGG-16 is used (Figure 8)
) Afzal et al. reported that most of state-of-the-art
CNN models yielded around 89% of accuracy on
document image classification task

J Transfer learning?
JWhy don’t we initialize our model’s weights from a
model that has been already trained on a Iar§e—scale
data, such as ImageNet (about 14M images):

dWhy? #1) training a model from the scratch (i.e., the
value of weights between neurons are initialized to
random number) takes too much time; (2) we have
too small a dataset to train a model

224x224x3 224x224x64
V/ /4

7/ 112 x 112 x 128
A

//

x 512

) comolution + RelU
I max pooling
fully nected + RelU
softmax

7x7
7 /|28 x 28 x 512
(C’ HTANIL}JA—E}S% 1x1x 4096 1 x 1 x 1000
/,

Figure 8. Architecture of original VGG-16. In
our project, the last softmax layer is
adjusted to have a shape of 3, which is the
number of our target classes; handwritten,
typed, and mixed

Afzal, M. Z., Kélsch, A., Ahmed, S., & Liwicki, M. (2017, November). Cutting the error by half: Investigation of very deep CNN and advanced training strategies for document image classification. In 2017 14th IAPR International Conference on Document Analysis

and Recognition (ICDAR)(Vol. 1, pp. 883-888). IEEE.




Document Type Classification | Datasets

JWe have two datasets:
JExperiment 1: RVL-CDIP (400,000 document images with 16 different balanced
classes); publicly available

JExperiment 2: suffrage_1002 (1,002 document images with 3 different
balanced classes); manually compiled from By the People: Suffrage campaign

(Table 1)
handwritten | typed mixed Total
train 267 267 267 801
validation 33 33 33 99
test 33 33 33 99
Total 333 333 333 999

Table 1. Configuration of suffrage_1002 dataset.



Document Type Classification | Datasets

email filefolder handwritten  invoice advertisement . .
— e [ T handwritten typed mixed

scientific
presentation publication  questionnaire resume

Figure 9. Example document images from each 16 different classes in Figure 10. Example document images from each 3 different classes in
RVL_CDIP dataset suffrage_1002 dataset




Document Type Classification | Experimental Results

Table 1. Precision, recall, and f1-score of ¥GG-16 trained on RVL_CDIP dataset. The alphabetic labels are
corresponding to the following labels: letter, form, email, handwritten, advertisement, scientific report, scientific
publication, specification, file folder, news article, budget, invoice, presentation, questionnaire, resume, and memo.

Our class of interest. handwritten. is bolded. Table 2. Precision, recall, and f1-score of ¥GG-16 on suffrage_1002 testing set.
wnitt%) [A[BJ[CIDJEJF[IGIH]IT[IJTIKILIM]I[NTJTOTP JAve (unit: %) | handwritten | typed | mixed | Avg
Precision | 86 | 74 [ 98 [ 89 [ 89 [ 73 [ 90 | 88 [ 89 [92 [ 87 [ o1 [ 78 [ o1 [ 92 [ 88 | 87 Precision 89 91 90 90
Recall 94 |79 1 97 [ 96 | 91 | 73193 [91 [ 97 [86 |83 |8 |79 73 94|91 ] 87 Recall 97 94 79 90
Fl 86 | 77 197 192 190 [ 73 191 |90 ]93] 89 |85 [88 ] 79|81 ]93] 90| 87 F1 93 93 84 90

) Experiment 1: We obtained a model trained on a large-scale document image
dataset, RVL-CDIP with promising classification performance, as shown in Table 1

JdImplication: Features learned from natural images (ImageNet) are general enough to
apply to document images

JNow we can utilize this model by retraining it with our own suffrage 1002 dataset in
Experiment 2

J Experiment 2: The retrained model shows even better classification performance,
as shown in Table 2



Document Type Classification | Conclusions

J In both experiments, the state-of-the-art CNN
model is capable of classifying document images
with promising performance
) Potential Applications: help tagging an image
type

J A main challenge: classifying a mixed type
document image, as shown in Figure 11

J Future Work: Perform a confidence level
analysis to mitigate this problem

) Future Work: We expect that the classification
performance can be further improved with a

Pred: typed

et barcermen True: mixed

g ¢ 8 8 ¥

P

100 20 0 200 500

Figure 11. Failure prediction cases. On the left example, a typed
region is relatively smaller than that of handwriting. On the right
example, a handwriting region is relatively smaller than that of

typing.




Part 5: Library of Congress
Project 4. Quality Assessment

Objectives | Analyze image quality of the civil war collection By the People

Applications | Providing quality scores for machine reading on four criteria: (1)
skewness, (2) contrast, (3) range-effect, and (4) bleed-through



Quality Assessment | Technical Details

 Objective quality assessment on four criteria
) Skewness, Contrast, Range-effect, Bleed-through

) Based on the DIQA programs developed at Aida @ UNL (previously tested
using Chronicling America’s repository of archived newspaper pages

J Not directly machine learning related

J Why?
J Help identify images that need pre-processing
J Reduce unnecessary workload for pre-processing images
J Indicate general qualities of the dataset



Objective Quality Assessment | Examples

Bleed- Skewnes

Contras
t through s




Quality Assessment | Datasets

J The Civil War collection within By the People:
136003 images were downloaded

135990 images passed the DIQA program

13 images failed as they barely had texts (see examples later)




Quality Assessment | Experimental Results

|score|=0

0<|score|<1 -2.48%

1<=|score|<2 _ 7.25%

|score|=2

Skewness

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00% 4500% 50.00%




Quality Assessment | Observations

JdThere were 46% images had the perfect score (zero)

on skewness assessment St s B C
. U s 7802,
JBut, there were also 43% images had the largest o M% .

score (two)

JThis suggest the skewness of the dataset may be
divided

JHowever, a large portion of the dataset was hand-
written

JThe skewness evaluation was depending on vertical aligned
text line ends

JHand-written lines that were unjustified on left/right margin
may result in a faulty score

15565



Quality Assessment | Experimental Results

Contrast
80.00 —x -
7822 .88
70.00 C /—__—_// 7‘{\ VAT
60.00 sTo0 5459

48
50.00 2.

40.00 N 38.12
30.00 - 25.71 23.87

20.00

10.00

0.00

1840-  1850- 1860- 1870- 1880- 1890- 1910- 1930- 1940- 1950-
1849 W 1869 1879 1889 1899 1919 1939 1949 1959

—contrast avg

~90% of images in the dataset falls
within this range




Quality Assessment | Experimental Results

Contrast for 1860 - 1869

60.00

50.00 — %493

40.00

30.00 -

2150 2079 2071 21.08 21.63
20.00

10.00

0.00
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Quality Assessment | Observations

I Based on previous work of Aida, contrast score less than 40 may cause
troubles for reading

I The first chart shows the average contrast was good

JBut ~90% images fall in year range from 1860 to 1869

I The second chart break the year range to year-wise analysis

JImages from 1961 to 1964 seem to have contrast issues



Quality Assessment | Experimental Results

30.00
25.00
20.00
15.00
10.00
5.00

0.00

Range-Effect

A1 e B 1
/ J.93
———""'"'{.79
T — 5.99 \/6.69
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299 419 2.18
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Quality Assessment | Observations

I Based on DIQA on Chronicling America, range-effect score that is smaller
than 3 is good

) Statistic data indicates the database averagely has quality issues on range
effect




Quality Assessment | Experimental Results

Bleed-Through (Background Noise)
14.00
/N
12.00
10.00
N\

Z:g Bt -, /7\/

1.87 _ i 1.90
2.00 1.52 1.65 1.71

0.00

1,36

0.02

1840-  1850- 1860- 1870- 1880- 1890- 1910- 1930- 1940- 1950-
1849 1859 1869 1879 1889 1899 1919 1939 1949 1959

—bleed-through avg




Quality Assessment | Observations

JUnfortunately, there is no magic number to say which score is good

JBut rather than 76 images from 1940 to 1949, other images has relatively
lower score (better quality) on background noise




Quality Assessment | Potential Issues

) Numerous images with yellowish
background and faded inks

J They are hard to read even to human
eye
J Contrast could be lowered

J Skewness could be almost impossible to
compute



Quality Assessment | Potential Issues

J Numerous images are covers or labels
of a series

J These images are largely blank
J Contrast is poor

J Histogram equalization might be able to
enhance the quality




Quality Assessment | Potential Issues

) There are color-inverted images from
microfilm
) Renders bleed-through assessment useless




Part 5: Library of Congress
Project 5. Digitization Type Differentiation:
Microfilm or Scanned

Objectives | Recognize if an image digitized from Scanned or Microfilm

Applications | Metadata generation, pre-processing policy selection




Digitization Type Differentiation | technical Details

) Pre-trained ResNeXt is adopted
) Attached output layers are two dense layers with a 1D output vector

) The pre-trained ResNeXt can classify images to 1000 different
J The pre-trained ResNeXt is a good feature extractor
JINumber of parameters: 94.1 million @ 12.6 million

categories
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Digitization Type Differentiation | Datasets

) Created from the Civil War collection within By the People

J A manually created database by randomly choosing 600 images on scanned
materials and 600 images on microfilm materials

) The randomization was performed by shuffling the entire list of 36,003 images
in the collection

) The randomization ensured that images in the collection have a fair chance to
be chosen

) The randomization seed was fixed to ensure the experiments can be
reproduced



Type Differentiation | Datasets
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Digitization Type Differentiation | experimental Resuits

J With pre-trained ResNeXt,
It only took one iteration to reach more than 90% accuracy on training set, and

1t only took two iterations to reach more than 90% accuracy on testing set

SRS
oo \ /
V

1 2 3 - ) 6 7 8 9 10

20.00%

0.00%

—train accuracy —test accuray



Digitization Type Differentiation | experimental Resuits

JThe best test iteration result was able to 100% correctly classify all images

Ground Truth

Scanned Microfilm

Scanned n 0
Prediction
Microfilm 0 n



Digitization Type Differentiation | Conclusions

- Existing pre-trained model can be easily extended to more
designated tasks

) The extended model only need a small set of labeled data to reach
near-perfect performance in this task

J Automated digitization type differentiation is readily achievable.



Questions?




