
Pattern Matching by Sequential Subdivision of Transformation Space

Mingtian Ni and Stephen E. Reichenbach
Department of Computer Science and Engineering

University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA
mni@cse.unl.edu, reich@cse.unl.edu

Abstract

Pattern matching is a well-known pattern recognition
technique. This paper proposes a novel pattern matching al-
gorithm that searches transformation space by sequential
subdivision. The algorithm subdivides the transformation
space in depth-first manner by conducting boolean opera-
tions on the constraint sets that are defined by pairs of tem-
plate points and target points. For constrained polynomial
transformations that have no more than two parameters on
each coordinate, a constraint set can be represented as a 2D
polygon or a Cartesian product of 2D polygons. Then, the
boolean operations can be computed through generic poly-
gon clipping algorithms. Preliminary experiments on ran-
domly generated point patterns show that the algorithm is
effective and efficient under practical conditions.

1. Introduction

Pattern matching (or template matching) is one of the
well-known approaches for pattern recognition [8]. It has
been widely used in visual object location and recognition,
data fusion, change detection,etc. In pattern matching, a
pattern is defined as a set of features and the objective is to
establish correspondences from features in a template pat-
tern to features in a target pattern (the unknown pattern).

This paper focuses on point pattern matching, though
the proposed algorithm can be easily adjusted for matching
other patterns. The most general formulation of point pat-
tern matching problems is as follows:Given point template
(template point pattern)P = {pi(xi, yi)}

m

i=1
, target point

patternQ = {qj(uj , vj)}
n

j=1
, and transformation spaceT ,

find a transformationt in T that maximizes the number of
points inP that can be matched with points inQ under dis-
tance toleranceε. The solution to the problem is either a
transformation or a matching. The two forms of solution
are usually considered to be equivalent.

Many techniques have been developed for point pattern
matching. Based on the search spaces explored, the point

pattern matching techniques can be classified roughly as
matching space search techniques and transformation space
search techniques. Matching space search techniques in-
clude pruned tree search (PTS) [1], pruned correspondence
search (PCS) [2],etc.Transformation space search tech-
niques include relaxation [9], alignment [6], Hough trans-
forms [7], recognition by adaptive subdivision of transfor-
mation space (RAST) [3], geometric hashing [11], minimiz-
ing Hausdorff distances [5, 10],etc.

This paper presents a novel transformation space search
algorithm—pattern matching by sequential subdivision of
transformation space (PMSST). With this algorithm, each
possible pairing between a template point and a target point
defines a geometric constraint set in the transformation
space. All constraint sets sharing the same template point
form a candidate constraint set for the template point. Then,
the transformation space is sequentially subdivided by the
candidate sets in depth-first manner. During the subdivision,
each generated sub-region is the intersection of some con-
straint sets, i.e., any transformation in the sub-region can
match the pairs of points represented by the constraint sets.
The algorithm takes a range of numbers of points that are
expected to match and returns the sub-region that intersects
the maximum number of constraint sets.

The experiments evaluate the effectiveness and compu-
tational complexity of the algorithm. Preliminary resultson
randomly generated point patterns show that the algorithm
is effective and its computational complexity is low order
polynomial in the size of the point templates under reason-
ably large transformation space.

2. The Geometric Constraints

Let P , Q, T , andε be as described in the previous sec-
tion. The objective of pattern matching is to find at ∈ T

that brings as manypi’s as possible close to someqj ’s, i.e.,
to compute

max
t∈T,A⊆P

{‖A‖ | d(t(pi), qj) ≤ ε, pi ∈ A, qj ∈ Q}

whered(., .) is some distance inR2.

Pairing (pi, qj) defines a constraint setTij in T (a re-
gion) under distance toleranceε:

Tij(ε) = {t ∈ T | d(t(pi), qj) ≤ ε}.

Let Ci be the set of points inQ with which pi can be
matched andTi be the set of constraint sets that have the
same template pointpi:

Ci = {qj ∈ Q | ∃t ∈ T, d(t(pi), qj) ≤ ε},

Ti = {Tij | qj ∈ Ci} .

Then, solving the pattern matching problem is equivalent to
finding the intersection among constraint sets from differ-
entTi’s. The computation requires boolean operations (in-
tersection and subtraction) on constraint sets. For general
polynomial transformations, the high dimensionality of the
transformation space renders the boolean operations ineffi-
cient. However, for constrained polynomial transformations
that have no more than two parameters on each coordinate,
a constraint set can be represented as a 2D polygon or a
Cartesian product of 2D polygons. Then, the boolean oper-
ations on the constraint sets can be computed through effi-
cient, generic polygon clipping algorithms [4].

This research uses the following transformation model
(the combination of non-uniform scale and translation):

{

uj = a · xi + e

vj = d · yi + f.

With Manhattan distanced, the constraint setTij can be rep-
resented as the Cartesian product of 2D polygonsT ′

ij and
T ′′

ij :

Tij = {t ∈ T | |a · xi + e − uj| ≤ ε, |d · yi + f − vj | ≤ ε}

= {(a, e) ∈ T ′ | |xi · a + e − uj | ≤ ε}

× {(d, f) ∈ T ′′ | |yi · d + f − vj | ≤ ε}
4
= T ′

ij × T ′′
ij ,

whereT ′ is the projection ofT on ae plane,T ′′ is the pro-
jection ofT on df plane, and× denotes Cartesian product
of two regions. The relationship between the boolean opera-
tions onTij ’s and the boolean operations onT ′

ij ’s (T ′′
ij ’s)

is as follows:

Ti1j1 ∩
4 Ti2j2 = (T ′

i1j1
× T ′′

i1j1
) ∩4 (T ′

i2j2
× T ′′

i2j2
)

= (T ′
i1j1

∩2 T ′
i2j2

) × (T ′′
i1j1

∩2 T ′′
i2j2

),

Ti1j1 −
4 Ti2j2 = (T ′

i1j1
× T ′′

i1j1
) −4 (T ′

i2j2
× T ′′

i2j2
)

= [(T ′
i1j1

−2 T ′
i2j2

) ∪2 (T ′
i1j1

∩2 T ′
i2j2

)] ×

[(T ′′
i1j1

−2 T ′′
i2j2

) ∪2 (T ′′
i1j1

∩2 T ′′
i2j2

)]

−4[(T ′
i1j1

∩2 T ′
i2j2

) × (T ′′
i1j1

∩2 T ′′
i2j2

)]

= [T ′
i1j1

× (T ′′
i1j1

−2 T ′′
i2j2

)] ∪4

[(T ′
i1j1

−2 T ′
i2j2

) × (T ′′
i1j1

∩2 T ′′
i2j2

)],

where∩h, ∪h and−h stand for boolean operations inh-
dimensional space.

Level 1

Subdivide

SubdivideSubdivide

Subdivide
T1

T2

Tm

Candidate sets

...

...

.........

Priority queue

Header

......

...

...Level m−1

Level 0

Figure 1. Data structure.

3. The Algorithm

Most pattern matching methods fall into the so-called
hypothesis-and-test paradigm [10]. Methods using this
paradigm typically involve two phases. Phase one gener-
ates a number of hypothetical transformations (or match-
ings). These hypotheses are checked in phase two to see
if they meet some match quality criteria. In PTS [1] and
PCS [2], hypothetical matchings are formed in match-
ing space during depth-first search. The feasibility of
the matchings are then verified using linear program-
ming techniques. RAST [3] generates hypothetical regions
during adaptive subdivision of transformation space. Af-
terwards, the regions are checked if they contain trans-
formations that match enough points. The PMSST al-
gorithm developed in this paper is closely related to the
above three methods. However, PMSST forms hypothet-
ical regions by sequentially subdividing the transforma-
tion space using boolean operations on constraint sets. The
set of points that the regions can match and the transforma-
tions are directly available within the regions. Therefore,
the test phase is not needed.

PMSST uses depth-first search. The main data structures
are the candidate constraint sets and the priority queue as
pictured in Figure 1. For each pointpi in P , its candidate
constraint setTi is calculated as described in Section 2. All
such candidate sets are stored in an array{Ti}

m
i=1

. A region
R in the priority queue has three important properties:

• R.level: indicates thatR is generated by sequentially
subdividingT by Ti, i = 1. . .R.level.

• R.matchingSize: the number of constraint sets
whose intersection isR. This value gives the num-
ber of points that the transformations inR can
match.

• R.css: The set of template point and target point pairs
that the transformations inR can match. Note that the
template points inR.css is a subset of{pi}

R.level

i=1
.

Regions are enqueued with their priorities. The prioritiesare
compared based on two rules:

• Regions with higherlevel have higher priorities. This
rule forces depth-first search.

• If two regions have the samelevel, the region with
larger matchingSize has higher priority. This rule
forces best-first search.

When the algorithm starts, the priority queue has the
transformation spaceT as its only node.T is initialized such
thatT.level = 0, T.matchingSize = 0, andT.css = Ø.
Each constraint setTij in the candidate sets is initialized
such thatTij .css = {(pi, qj)}. The algorithm stops when
the priority queue is empty or when enough number of tem-
plate points have been matched. LetR be a region extracted
from the priority queue andi = R.level + 1. RegionR is
subdivided by candidate setTi = {Tij}

mi

j=1
. The subdivi-

sion generates a set of sub-regions{Rj}
mi+1

j=1
, where

Rj = R ∩ Tij , j = 1, . . . , mi

Rj .level = i,

Rj .matchingSize = R.matchingSize + 1,

Rj .css = R.css ∪ Tij .css

Rj = R − ∪mi

k=1
Tik, j = mi + 1

Rj .level = i,

Rj .machingSize = R.matchingSize,

Rj .css = R.css.

With reasonably smallε, Tij ’s typically do not overlap in T.
Therefore,Rj ’s do not overlap and∪mi+1

j=1 Rj = R. This
property means that the algorithm typically does not re-
explore a region during the depth-first search.

After the subdivision is done, non-empty sub-regionRj

is enqueued ifRj .matchingSize+m−Rj.level is no less
than the lowest number of matched points that are expected
so far. This rule prunes those regions that will not meet the
matching criterion.

The inputs to the PMSST algorithm are:

• P : point template.

• Q: target point pattern.

• ε: distance tolerance.

• T : transformation space.

• [kmin, kmax]: the range of the number of template
points to be matched, wherekmin specifies the mini-
mum number of matched points that are expected, and
the algorithm stops ifkmax or more points have been
matched.

The output of the algorithm is a region that matches the
maximum number of points.

Figure 2. The point template P (empty ovals)
and the target point pattern Q (filled ovals).

The worst case computational complexity of PMSST is
exponential inmn. However, the actual running time of
the algorithm depends on many issues: the transformation
space, the distance tolerance, the knowledge about the num-
ber of matched points that are expected,etc.Under practi-
cal conditions, the algorithm has computational complexity
that is low order polynomial inm, as suggested by the ex-
periments in Section 4.

4. Experimental Results

The experiments evaluate the effectiveness and the com-
putational complexity of the algorithm. The evaluation is
based on randomly generated point patterns and noise. The
setup of the experiments are as follows:

• point templateP : First, a set of 200 points (denoted
by P) are selected independently and uniformly in do-
main[−2.0, 2.0]× [−2.0, 2.0]. Then, chooseP to be a
subset ofP . The size ofP steps from 10 to 190 with
step size 10.

• transformation spaceT : {(a, e, d, f) | a ∈ [0.7, 1.3],
e ∈ [−0.2, 0.2], d ∈ [0.7, 1.3], f ∈ [−0.2, 0.2]}.

• noise range:[−0.005, 0.005]× [−0.005, 0.005].

• distance toleranceε: ε is set to 0.005 according to the
noise range.

• target point patternQ: First, randomly select a trans-
formation t inT . Then, for eachpi in P , select a ran-
dom noise vectorεi uniformly within the noise range
and letQ =

{

qi | qi = t(pi) + εi, pi ∈ P
}

. P andQ

are shown in Figure 2. After that, randomly permu-
tateQ. Finally, for eachP , a certain percentage of its

 0

 100

 200

 300

 400

 500

 600

 700

 0 20 40 60 80 100 120 140 160 180 200

R
un

ni
ng

 T
im

e
in

 S
ec

on
ds

Point Pattern Sizes

per= 0%
per=10%
per=20%
per=30%
per=40%
per=50%

.
.

tim
e=0.7 si

ze
 lo

g(si
ze

)

Figure 3. The running time of the algo-
rithm under different percentages of missing
points.

transformed points inQ are removed to simulate miss-
ing point occasions. The percentage (denoted byper)
steps from0% to 50% with step size10%.

• [kmin, kmax]: kmin = (1.0 − per − 0.2) · |P | and
kmax = (1.0 − per) · |P | in all occasions, where|P |
is the size ofP .

The test results are shown in Figure 3. For easy compar-
ison, functiontime = 0.7 · size · log(size) is also plotted
in the same figure. The results suggest that:

• The expected running time of the algorithm is no worse
thanO(m · log(m)) under this experimental setting.

• The algorithm degrades gracefully when missing point
percentageper increases.

• The algorithm is especially efficient for point patterns
of up to 100 points or whenper is low.

In all test cases, more than95% of the template points are
matched correctly.

5. Conclusion

This paper develops a novel pattern matching algorithm
by sequential subdivision of transformation space. The al-
gorithm represents the constraint sets as 2D polygons or
Cartesian products of 2D polygons and then uses efficient
polygon clipping algorithms for space subdivision. The sub-
division naturally integrates two crucial pruning techniques:

• Any region in transformation space typically is ex-
plored only once.

• The regions in the priority queue are expanded in
a best-first manner. The more promising regions are
likely to be found earlier in the search. These regions
are then used to promote minimum expected match-
ing sizekmin and subsequently to prune the remain-
ing of the priority queue. If a region can not gener-
ate better results than what has already been seen, it is
pruned. This technique is called the branch-and-bound
technique.

Preliminary experiments suggest that PMSST is a practical
algorithm.

Because computing boolean operations of polygonal re-
gions in high (three or larger) dimensional space is costly,
the PMSST algorithm is difficult to extend to higher dimen-
sional transformation models than those described in Sec-
tion 2.

Acknowledgment

This research was partially supported by the National
Science Foundation, Grant No. 0231746.

References

[1] H. S. Baird. Model-based Image Matching using Location.
MIT Press, Cambridge, MA, 1985.

[2] T. M. Breuel. Model based recognition using pruned corre-
spondence search. InProc. IEEE Computer Vision and Pat-
tern Recognition, pages 257–262, 1991.

[3] T. M. Breuel. Fast recognition using adaptive subdivisions
of transformation space. InProc. IEEE Computer Vision and
Pattern Recognition, pages 445–451, 1992.

[4] J. Foley, A. Dam, S. Feiner, and J. Hughes.Computer Graph-
ics: Principles and Practice in C. Addison-Wesley, 1995.

[5] D. P. Huttenlocher, G. A. Klanderman, and W. J. Ruck-
lidge. Comparing images using the Hausdorff distance.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
15(9):850–863, 1993.

[6] D. P. Huttenlocher and S. Ullman. Object recognition using
alignment. InProc. International Conference on Computer
Vision, pages 102–111, 1987.

[7] J. Illingworth and J. Kittler. A survey of the Hough trans-
form. Computer Vision, Graphics and Image Processing,
44:87–116, 1988.

[8] A. K. Jain, R. P. W. Duin, and J. Mao. Statistical pattern
recognition: A review.IEEE Trans. on Pattern Analysis and
Machine Intelligence, 22(1):4–37, 2000.

[9] S. Ranade and A. Rosenfeld. Point pattern matching by re-
laxation.Pattern Recognition, 12:269–275, 1980.

[10] W. Rucklidge.Efficient Visual Recognition Using the Haus-
dorff Distance, volume 1173 ofLecture Notes in Computer
Science. 1996.

[11] H. J. Wolfson and I. Rigoutsos. Geometric hashing: An
overview. IEEE Computational Science and Engineering,
4(4):10–21, 1997.

