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Abstract
Past studies have shown that objects are created and then die
in phases. Thus, one way to sustain good garbage collection
efficiency is to have a large enough heap to allow many al-
location phases to complete and most of the objects to die
before invoking garbage collection. However, such an oper-
ating environment is hard to maintain in large multithreaded
applications because most typical time-sharing schedulers
are not allocation-phase cognizant; i.e., they often schedule
threads in a way that prevents them from completing their
allocation phases quickly. Thus, when garbage collection is
invoked, most allocation phases have yet to be completed,
resulting in poor collection efficiency.

We introduce two new scheduling strategies, LARF
(lower allocation rate first) and MQRR (memory-quantum
round robin) designed to be allocation-phase aware by as-
signing higher execution priority to threads in computation-
oriented phases. The simulation results show that the reduc-
tions of the garbage collection time in a generational collec-
tor can range from 0%-27% when compare to a round robin
scheduler. The reductions of the overall execution time and
the average thread turnaround time range from -0.1%-3%
and -0.1%-13%, respectively.

Categories and Subject Descriptors D.3.4 [Programming
Language]: Processors—Memory management (garbage
collection)

General Terms Experimentation, Languages, Performance

Keywords Garbage collection, Thread scheduling
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1. Introduction
Over the past few years, we have seen widespread adop-
tion of Java as a programming language for the develop-
ment of long-running server and multithreaded applications
[14, 16]. Java possesses many attractive features such as sim-
ple threading interfaces and type-safety, which ease the de-
velopment of complex software systems. Moreover, it also
usesgarbage collection (GC) to simplify the task of dynamic
memory management, which can greatly improve program-
mer productivity by reducing memory errors. However, a re-
cent study has shown that garbage collection can be ineffi-
cient in long-running multithreaded server applications fac-
ing unexpected heavy demands. In these circumstances, the
throughput performances of these applications can degrade
sharply, resulting in failure with little or no warning [12,32].

In our previous work [32], we observed that as the work-
load of a server application increases, so do the lifespans
of objects in that application, leading to poor GC perfor-
mance. Further investigation reveals that thread scheduling
policies play a major role in causing the object lifespans
to increase [31]. Currently, most modern operating systems
employ some forms of preemptive round robin scheduling
policies based on time-quantum. Such policies are designed
to provide fairness in terms of execution time, butdo not
consider allocation phases as part of the scheduling deci-
sion.

An allocation phase is an execution segment, in which
an application allocates a large volume of objects. A study
by Wilson and Moher [30] reports that allocation phases of-
ten occur during interactive segments of the program, and
garbage collection can be efficiently invoked at the end of
non-interactive segments or computation-oriented phases
[28]. Our studies have shown that when a server applica-
tion is facing heavy workload, garbage collection is often
invoked when threads are in these allocation phases, instead
of the more ideal computation-oriented phases [30].

To understand why GC is often invoked when threads are
in allocation phases, we investigate the events that take place
when a server application is under stress. In server applica-
tions, more threads become active as demands increase. A



larger number of threads also means that there is more com-
petition for the CPU time. Thus, a thread often has to wait
longer for its turn to execute. Because these threads share
the same heap, object allocations can result in much higher
needs for heap memory, leading to more garbage collection
invocations. As a result, an execution interval between two
GC invocations becomes shorter. (We refer to each execution
interval as amutator interval.)

In time-quantum based scheduling, the combination of
interleaved executions, shorter mutator intervals, and longer
wait times can cause threads to get fewer execution quanta
in each mutator interval. Because an allocation phase often
takes many quanta to complete,1 these threads may not be
able to complete many, if any, allocation phases prior to
a GC invocation. The delay in completing these allocation
phases makes the lifespans of these objects appear to be
much longer.

This Work. We propose two new policies that consider al-
location phases as a thread-scheduling criterion. The first
policy is Lower Allocation Rate First or LARF. In this pol-
icy, threads with lower allocation rates are scheduled prior
to threads with higher allocation rates. The rationale for
proposing this technique is to allow threads that have already
completed or are about to complete their allocation phases to
manipulate as many objects as possible so that these objects
will die. This will allow garbage collection to be more ef-
fective in liberating objects, and therefore more heap space
will be available for subsequent allocation phases. It is worth
noting that this technique still relies on time-quantum for
preemption.

The second policy isMemory-Quantum Round-Robin or
(MQRR), a policy that uses heap consumption instead of
execution time as the main criterion for thread preemption.
MQRR usesmemory-quantum, which specifies the amount
of heap memory that a thread can allocate in each scheduled
execution. Once the allocated amount reaches this value, the
thread is preempted. The rationale for proposing this policy
is to allow threads to make as much progress as possible
toward completing their allocation phases. In applications
which most threads perform the same task, the memory-
quantum can be tuned to closely match the average amount
of memory consumed by each allocation phase.

In Section 4 and Section 5, we evaluate the perfor-
mances of the two proposed techniques against that of
a traditional round robin (RR) scheduling policy through
trace-driven simulation. We use traces generated from five
multithreaded benchmark applications: ECPerf [25], SPEC-
jAppServer2004 [23], SPECjbb2000 [22], hsqldb, and luse-
arch [5]. These benchmarks are representative of real-world
servers and complex multithreaded applications. Our evalua-
tion focuses on three performance areas: garbage collection

1 Our preliminary study indicates that an allocation phase can take as many
as 22 quanta to complete in SPECjAppServer2004 [23].

(mark/cons ratio, pause time), synchronization overheads
due to contentions, and overall response time.

In Section 6, we highlight some of the existing issues
with the proposed algorithms and our proposed solutions
to overcome them. Moreover, we provide a discussion on
how to extend the Linux kernels to support the proposed
scheduling policies; the discussion includes issues such as
how to integrate the proposed algorithms to the dynamic
prioritization in Linux and how such an integration makes
our algorithms more robust.

2. Motivation
In our previous work, we characterized the lifespans of ob-
jects in a SPECjServer2004. We discovered that lifespans
become much longer as the number of active threads be-
comes larger [31]. To better understand the reason for such
behavior, we revisit an observation made by Wilson and Mo-
her [28, 30]. They observed that objects are created and die
in phases. That is there are phases in which a program al-
locates a vast amount of objects. In effect, theseallocation
phases set the stage for thecomputation-oriented phases, in
which objects created earlier are manipulated and then die.
We refer to the amount of heap space needed to complete a
phase as theheap working set.

When multiple threads share the same heap space, the
time-sharing scheduler such as the one used in Linux kernels
may interleave the execution of threads in a way that prevent
these threads from completing their allocation phases within
a mutator interval. Figure 1 provides a simple illustration
of such a scenario. The figure assumes that each allocation
phase has fixed length and fixed allocation rate (the amount
of allocated bytes over time). It also assumes that no objects
die in the allocation phases. Figure 1(a) describes the allo-
cation pattern of three threads (T1, T2, T3) ready to run. At
that particular time, the heap is empty. The scheduling policy
is assumed to be round robin with fixed time quantum.

Each square in Figure 1(b) indicates a quantum that is part
of an allocation phase. The scheduler first picksT 1 to run for
one quantum beginning atQ0. At the end ofQ0, T 1 is sus-
pended, and the scheduler picksT 2 to run next. Note that in
each thread, four quanta are needed to completely allocate
the heap working set. These three threads take turns execut-
ing and allocating objects in the heap until the beginning of
Q8 when the heap is full. At this time, garbage collection
is invoked but not one thread has completed its allocation
phase. Therefore, none of the objects in the heap can be col-
lected in this example.

Notice that the heap size is large enough to hold two heap
working sets (e.g., working sets for T1 and T2). However,
interleaved execution prevents each thread from allocating
its working set. In our example, no threads are successful,
and GC is uselessly invoked. In addition, if the scheduler
allows T1 to allocate its heap working set, suspends it, and
then allows T2 to do the same, when T3 is scheduled to run,
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Figure 1. The effect of thread scheduling on garbage collection
performance

GC will be invoked because there is not enough room in
the heap to satisfy the allocation requests made by T3. Even
though the working sets of T1 and T2 are in the heap, both
T1 and T2 have not had the opportunity to execute in the
computation-oriented phases so most of the objects in the
heap are still alive. Again, performing garbage collectionin
this scenario is useless.

It is also worth noting that if the scheduler were to sched-
ule T1 and then T2 instead of scheduling T3 as shown in
Figure 1(c), both T1 and T2 could have completed their
computation-orientedphases, and by the time GC is invoked,
most objects in the heap would have died. From the object
lifespan perspective, inefficient GC due to scheduling can
make the lifespans of objects appear to be longer. In fact, we
have observed the increasing lifespan phenomenon in our
previous study of a SPECjAppServer2004 [32, 31].

This simple example illustrates the influence of thread
scheduling on GC performance. In fact, the two scenarios
shown in Figure 1(b) and Figure 1(c) can be avoided if the
scheduler considers allocation phase behavior and applies
the following two principles as part the scheduling process:

1. Give higher execution priority to threads in computation-
oriented phases so that more objects will die.

2. Schedule threads in such a way that minimizes the num-
ber of partial working sets in the heap.

In the next section, we introduce two scheduling policies
that leverage allocation-phase information provided by the
JVM to schedule threads so that better GC efficiency can be
achieved.

3. Proposed Scheduling Policies
We hypothesize that if thread-scheduling mechanisms are
designed to satisfy these two conditions, the performance
of garbage collection in multithreaded applications will im-
prove. In this paper, we propose two new scheduling poli-
cies. These two policies do not change the way threads are
suspended for I/O services or essential operating system in-
terruptions (e.g., signals). However, they change the ways
execution-ready threads are scheduled and currently running
threads are preempted.

3.1 Lower Allocation Rate First (LARF)

LARF is designed to be easily integrated with existing round
robin based scheduling mechanisms. In this approach, the
Java Virtual Machine (JVM) maintains an allocation rate
(per quantum) of each thread when it was last executed.
This information is used to determine the execution priority;
threads with lower allocation rates are scheduled ahead of
threads with higher allocation rates. Time-based quantum is
used to preempt the executing thread.

The major benefit of this technique is that threads that
appear to be in the computation-oriented phases have higher
execution priorities, satisfying the first condition. However,
by using time-based quantum to determine preemption, it
becomes more challenging to achieve the second condition
as the volume of allocated objects is a more precise metric
to describe the heap working set than time.

We will discuss in detail the way LARF is simulated in
this work (see Section 4). It is also possible that a thread with
extremely high allocation rate may starve since other threads
with lower allocation rates always have higher execution
priority. We will discuss our strategy to prevent starvation
as well as a way to integrate this mechanism to the existing
Linux scheduling mechanism (see Section 6).

3.2 Memory-Quantum Round Robin (MQRR)

MQRR is designed to support the two conditions. In this
approach, time-based round robin is replaced with memory-
based round robin, a policy that regulates the amount of
memory each thread can allocate during its turn on the CPU.
For example, if the memory quantum is set to 200 KB, a
thread can stay on the processor until it allocates 200 KB of
heap memory. At that point, the thread is suspended, and the
next successive thread is scheduled.

If the memory quantum is tuned to be slightly larger than
the most common heap working set, it can ensure that in
most cases a thread has enough time on the processor to al-
locate its current working set (thus, satisfying the second
condition) and then execute the subsequent computation-
oriented phase (thus, satisfying the first condition). Notethat
a thread in computation-oriented phase infrequently allo-
cates objects, and therefore, it can stay on the CPU longer,
allowing it to “consume” more objects in each execution
quantum. The thread is then suspended at the beginning of



the next allocation phase. Though the suspension may leave
a partial working set in the heap, its size should be small.

Hypothetically, it is possible that MQRR may need more
memory quanta to completely allocate a large heap working
set than a time-based round robin approach. For example,
let’s assume that threadT 1 allocates heap memory at the rate
of 4 MB per second. If the memory quantum is set at 200KB
based on a common heap working set found in other threads,
T 1 will use up its memory quantum in 50 milliseconds. Let’s
further assume thatT 1 is trying to allocate a working set
of size 2 MB; it will need ten quanta. On the other hand,
a time-sharing scheduler with a fixed size quantum of 100
milliseconds can allocate the working set in five quanta.

Based on our preliminary result, such a scenario is un-
likely as our study using Linux kernel shows that multiple
time-based quanta (ranging from 3 quanta to 22 quanta) are
needed for a thread to allocate a heap working set. Because
our memory quantum is long enough to allocate a common
working set, which is equal to multiple time-based quanta,
threads should be able to allocate larger working sets using
fewer memory quanta than time quanta.

In the next section, we will discuss the implementation
of MQRR in our simulator. The discussion on integrating
MQRR with the existing scheduler in Linux is provided in
Section 6.

4. Simulation Environment
In spite of many shortcomings such as its inability to pro-
vide realtime performance, simulation is still an attractive
approach for our experiment because the proposed MQRR
is quite complex and will require a significant implemen-
tation effort to ensure correct functionality. Simulationalso
provides us with a common platform to study and compare
the performance of all three algorithms (round robin, LARF,
and MQRR), while filtering out other runtime factors such
as competitions for the CPU time from other threads in the
system. In addition, past studies have shown that simulation
can provide efficient ways to conduct research in the areas
of operating system and garbage collection [24, 13, 21].

Our simulation environment makes the following as-
sumptions. First, we assume that there is only one CPU in the
system. This assumption simplifies the simulation environ-
ment as there is only oneready queue instead of one for ev-
ery processor in the simulator. Second, we ignore I/O events
as they normally cause threads that request I/O services to
be suspended. Thus, these threads are in the blocking state,
which is not affected by our proposed scheduling policies.
Third, we assume that the execution flow of each thread
does not change after we apply different scheduling strate-
gies to reorder the execution sequence. This assumption can
guarantee that the heap mutation sequence of a thread is
not affected by scheduling strategies. Additionally, our sim-
ulator assumes that semaphore is used for locking objects.
Many JVMs today, including HotSpot, utilize thin-lock as

a way to reduce the synchronization overhead [26]. Thin
lock uses hardware instructions such as compare-and-swap
to guard objects shared by multiple threads. The first time
contention occurs in a shared object, spin-lock is used to pre-
vent data races. Afterward, traditional locking mechanisms
such as semaphore are used to lock that particular object [3].
In MQRR, the use of spin-lock can cause our simulator to
become live-lock since the main preemption criterion is the
volume of heap allocation. Thus, when a contention occurs
in our simulation, we assume that the thread attempting to
access the locked object will be blocked.

The input to our simulator is the runtime trace of each
thread. We instrumented Sun HotSpot VM to capture all the
allocation events. We utilized Merlin algorithm [11] to effi-
ciently and precisely compute the object reachability infor-
mation that can be used to derive the lifespan information. To
track the synchronization behavior, we recorded allmonitor
enter andmonitor exit events during the execution as they are
commonly used to synchronize objects. We also recorded the
identifications of threads that access each shared object. We
also placed a timestamp after each event that can be used for
event synchronization during simulation.

The remaining configurable parameters include schedul-
ing strategy (MQRR, LARF, or round robin), heap organiza-
tion (e.g., heap size, ratio between minor and mature gener-
ations), and garbage collection techniques (mark-compact,
semi-space copying, and two generational collectors). The
outputs of the simulator are metrics that describe the garbage
collection performance (e.g., number of GC invocations and
mark/cons ratio) and the overall performance (e.g., context-
switching events and synchronization overhead).

4.1 Simulating Thread Scheduling

Figure 2 provides an overview of our scheduling simulator.
First, our simulator initializes all threads in theready queue
in the order of their creation times. Then it schedules the very
first thread in the ready queue and simulates its execution
based on the desired policy (e.g. RR, MQRR) by reading its
trace information. If amonitor enter event is encountered,
the simulator checks whether the thread is trying to acquire
a lock already owned by some other thread. If so, the thread
is placed at the end of thewaiting queue; otherwise the
simulator continues to execute the thread. If the simulator
encounters amonitor exit event, a lock related to the monitor
is released, and all threads competing for that lock are moved
from the waiting queue to the ready queue. When a quantum
(time-based or memory-based) runs out, the thread is put on
theready queue, and the scheduler picks a successor thread
from theready queue as specified by the scheduling strategy.

As the mutation sequence changes due to different schedul-
ing policies, there are several challenges that must be ad-
dressed:

• Determining thread creation time. In our simulation,
execution flows are different when different scheduling
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Figure 2. Overview of our schedulers simulator

strategies are used. Therefore, we use a time-insensitive
approach to determine when a thread is created. In this
method, we use the allocated bytes of themain thread
as a reference to record each thread’s creation time. In
our simulation,T 1 is created when themain thread has
allocated X bytes. This is reasonable because themain
thread spawns most, if not all, threads in an application.

• Detecting quantum expiry. Assuming that a CPU quan-
tum isT seconds, when a thread is scheduled to run, our
simulator records the timestamp of the first event, which
is denoted asT 0. As the simulator processes the subse-
quent events of that thread, it also checks the timestamp
of each event; if the timestamp of an event is greater
than T+T0, then the thread has used up its quantum. The
thread is then inserted into theready queue. Otherwise,
the simulator continues to execute the thread.

• Taking synchronization into account. To simulate mon-
itor events, we set up a hash table to record every object’s
basic information, such as its identification and its size.
We also associate each object with a sync-lock, which
is used to identify if this object is being accessed by
another thread. At every object allocation event, our sim-
ulator adds a new entry to the hash table. When a thread
tries to access a shared object, our simulator first checks
the sync-lock. If the object is in use, the thread is added
to the waiting queue.

4.2 Simulating GC Behavior

We used our simulator to study the effect of our technique
on four different “stop-the-world” garbage collection algo-
rithms:

Mark-compact (MarkCompact) collects the heap in two
phases: the first is marking all live objects; the second phase
is compacting the heap by moving all live objects into con-
tiguous memory locations.

Semi-space copying (SemiSpace) divides the heap equally
into two copy spaces. It allocates in thefrom space, and once

this space is full, copies surviving objects to theto space.
Once the garbage collection process has completed, the two
labels,from andto are swapped.

Generational copying (GenCopy) utilizes two spaces in
the heap: a nursery space, which contains all newly allocated
objects since the last GC, and a mature space, which contains
the remaining objects. When the nursery space is full, a
minor collection is performed and all surviving objects are
promoted into the mature space. The mature collector uses
SemiSpace collector.

Generational mark-compact (GenMC) uses copying in
the nursery space and MarkCompact in the old space. This
technique is used in many commercial virtual machines in-
cluding HotSpot [26] and .NET Framework [17].

For more information, please refer to Wilson’s survey
paper of uniprocessor garbage collection [29] or Jones and
Lin’s book on garbage collection [15].

5. Evaluation
In this section, we evaluate the performances of LARF and
MQRR against that of round robin (RR), a widely adopted
strategy in time-sharing schedulers. Our evaluation includes
the effect of our proposed algorithms on the GC performance
and the overall performance using GenMC as the default col-
lection algorithm. We chose GenMC because this technique
has been widely used in many commercial virtual machines
[26, 17]. We set the heap size in our experiment to be three
times larger than the maximum live size as this value yields
a reasonable performance for generational garbage collec-
tor [10]. We also configured the size of the mature space to
be twice as large as that of the nursery space. Our previ-
ous study showed that this value yields the best performance
for multithreaded server applications [32, 31]. We also eval-
uated the sensitivities of our algorithms to heap sizes and
garbage collection policies.

The platform used for trace generation and simulation
was an AMD Athlon workstation running Linux 2.6. In our
simulation, the CPU quantum of RR and LARF was set to
1.14 ∗ 10−3 seconds, the average quantum length of our
platform. Note that our study indicates that threads often get
preempted prior to quantum expiry, and thus they spend only
about1.14 ∗ 10−3 seconds on the CPU. Because our trace
generator filters out I/O accesses and page faults, giving a
full quantum (e.g., 10 0 ms) to each simulated thread may
not be representative of real-world systems.

The memory-quantum of MQRR is set to 10 KB. We
adopted this value for two reasons. First, our preliminary in-
vestigation of the allocation phases showed that most phases
have a working set of about 10 KB. We also conducted
many experiments using multiple memory-quantum values
and discovered that 10KB yielded consistently good results
in all benchmarks.



Benchmark Description Input configurations Total allocations Maximum Number of
objects(million) bytes(MB) live size (MB) threads

hsqldb Executes a number of transactions -s default 4.43 134.36 80.11 81
against a model of a banking application

lusearch Performs a text search of keywords over -s default 16.4 2101.92 3.95 32
a corpus of literature data

SPECjbb2000 A Java program emulating 3-tier system 8 warehouses 1113.86 128161.5 145.52 36
focusing on the middle tier

SPECjAppServer2004 A J2EE benchmark emulating an transaction rate = 1 48.761 1501.42 116.01 407
automobile manufacture company

ECPerf An original version of jAppServer2004 but transaction rate = 1 34.112 1128.01 101.12 405
provides different workload (no web tier)

Table 1. Benchmark Characteristics

5.1 Benchmarks

We chose two benchmarks:hsqldb and lusearch from Da-
Capo suites [5]2. We needed to subset the DaCapo suite
because most of the benchmarks are not multithreaded.
The remaining three benchmarks areSPECjbb2000, SPEC-
jAppServer2004, andECPerf. Table 1 shows the brief de-
scription and characteristics of these five benchmarks.

5.2 Garbage Collection Performance

We usemark/cons ratio [4, 7, 11] to measure the GC over-
head. Mark/cons ratio is defined as the total number of bytes
copied during all garbage collections divided by the total
number of allocated bytes. The metric indicates the GC work
per allocated byte. Work by Hirzel et al. [13] also uses
mark/cons ratio to evaluate the simulated performance of a
garbage collection strategy.

Figure 3(a) shows the mark/cons ratio of GenMC under
RR, MQRR, and LARF scheduling strategies. In the graph,
the higher bars indicate worse performance. Table 2 gives
the number of garbage collection invocations under the three
strategies. It is worth noting that the mark/cons ratio of
hsqldb is not affected by scheduling strategies.Hsqldb first
loads a large database (about 80MB) into the heap, and
then generates 80 threads to query the database. Each thread
performs several SQL operations, which are very short. Also
the allocation size of each thread is less than 1MB. We
observed that all these threads die before they encounter
their first GCs regardless of the scheduling strategies.

For lusearch, LARF and MQRR show a 10% reduction
of mark/cons ratio. For the remaining benchmarks, LARF
and MQRR can reduce the mark/cons ratio by 15% in
SPECjbb2000) to 25% in SPECjAppServer2004. We can
achieve such reductions because LARF and MQRR give
higher priority to threads in computation-oriented phases.
Therefore, there are more dead objects at each GC invoca-
tion point.

5.3 Pause Times

In stop-the-world garbage collectors, the amount of garbage
collection overhead determines the pause time of a program
in two aspects: pause due to each GC invocation, which

2 The version of DaCapo benchmarks that we used is dacapo-2006-10.

reflects the disruptiveness of the whole program, and pause
time per thread, which reflects the GC stoppage within the
execution of each thread.

5.3.1 Pauses due to each GC invocation

We measured pause time per GC as the amount of copying
work done by each GC invocation divided by the heap size.
Figures 3(b) and 3(c) depict the average and maximal pause
time per GC, respectively. The graphs indicate that LARF
and MQRR can significantly reduce the pause time of each
GC in four out of five benchmarks. Again,hsqldb is not
affected by the different scheduling policies. The result also
indicates that the two scheduling algorithms allow garbage
collection to be more efficient.

5.3.2 GC pause time per thread

In stop-the-world garbage collectors, all threads are stopped
during a garbage collection invocation. To investigate theef-
fect of garbage collection on each thread, we measured the
time spent by each thread doing the GC work divided by its
allocation size. This metric partially reflects the mutatoruti-
lization of each thread. Simply, a higher pause time indicates
a lower mutator utilization by a thread.

Figure 4 illustrates the boxplots of the pause times of the
five benchmarks. Each boxplot can be interpreted as follows:
the box contains the middle 50% of the data from the 75th
percentile of the data set (represented by the upper edge of
the box) to the 25th percentile (represented by the lower
edge); the line in the box means the median value of the data
set; the whiskers at both ends of the vertical line indicate the
minimum and maximum values.

Once again, the boxplot ofhsqldb using all three schedul-
ing strategies show no differences in performance. It can be
seen that most threads experience no pauses, meaning that
there were no GC invocations during their lifetimes.

The compactness of boxplots indicates the fairness of
scheduling strategy. The term fairness means that threads
allocating fewer objects should spend less time waiting for
GC to be completed. As shown in Figure 4, the boxplots
of MQRR are tighter than those of RR and LARF. This is
because threads that are less active (i.e., threads that allocate
fewer objects) experience shorter GC pauses in MQRR since
they are scheduled earlier than when RR and LARF are used.
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Figure 3. Illustrations of mark/cons ratio and the pause times per GC

Benchmark RR LARF MQRR
Minor Full Minor Full Minor Full

hsqldb 6 5 6 5 6 5
lusearch 2673 2 2578 2 2301 2
SPECjbb2000 1521 35 1301 25 1290 25
SPECjAppServer2004 191 94 180 78 162 65
ECPerf 123 84 93 76 102 60

Table 2. Number of garbage collection invocations

hsqldb lusearch jbb2000

jAppServer2004 ECPerf

Figure 4. Comparing the GC pause time per thread

5.4 Overall Performance

Other than garbage collection time, scheduling strategies
can affect synchronization time and context-switching time,
which in turn, affect the turnaround time of an application.

5.4.1 Synchronization overhead

Different scheduling strategies yield different sequences of
execution. The changes in execution sequence can affect the
synchronization behavior, resulting in different synchroniza-
tion overheads. As we stated earlier, thread synchronization

is mainly implemented by monitors in Java. There are two
kinds of monitor-related events, which incur overhead:

• Entering and exiting never contended monitors. When
a thread enters a monitor, it will attempt to acquire a
thin-lock associated with the monitor [3]. It performs a
Compare-And-Swap (CAS) operation to check if the lock
has been set by other thread. Thus, the major cost of en-
tering a monitor is execution cost of the CAS instruction.

• Entering and exiting contended monitors. A monitor con-
tention occurs when a thread attempts to enter a moni-



tor already acquired by another thread. In JVMs utilizing
thin-lock mechanism, the first time the contention occurs,
a spin-lock mechanism is used to hold the thread at the
entry point. From this point on, heavyweight lock will be
used to synchronize this object. Thus, the major cost of
the subsequent contentions is the time spent on system
calls to acquire and/or manipulate the heavyweight lock.

The major synchronization overhead is mainly due to
contentions. Thus, we evaluate the synchronization overhead
as the number of monitor contentions with respect to each
scheduling mechanism. Table 3 reports our simulation re-
sults. LARF has more synchronization contentions than RR
in hsqldb and ECPerf but the increase is less than 10%.
MQRR experiences more synchronization contentions than
RR in lusearch andjServer04. In the worst case, the increase
in the number of contentions due to MQRR is 15% inluse-
arch.

5.4.2 Context-switching overhead

Table 3 reports the number of context-switching events when
different scheduling strategies are used. As shown in the
table, LARF has a greater frequency of context-switching
than RR inhsqldb and ECPerf. This is mainly due to the
increasing monitor contentions. On the contrary, the number
of context-switching events drops significantly in MQRR
because the memory-quantum in MQRR often spans the
entire allocation phase, which generally consists of several
CPU time slices in RR. Therefore, threads are suspended less
frequently in MQRR when compared to RR and LARF.

5.4.3 Total execution time

To calculate the overall execution time of a multi-threaded
program, we need to add up the execution times of all
threads, the total GC time, and any other overheads, includ-
ing the synchronization and context-switching. We use the
following formula to calculate the total execution time.

Totalexec =

n∑

i=1

(Texeci
)+cgc∗Vgc+csyn∗Nsyn+ccs∗Ncs

In this formula,Texeci
is the execution time of theith

thread;cgc is the average marking/copying time per byte;
Vgc is the total GC work in bytes, which is indicated in Sec-
tion 5.2. Parametercsyn is the average cost of each mon-
itor contention, andNsyn is the number of monitor con-
tention events. Parameterccs is the average time of a context-
switching event, andNcs is the number of context-switching
events.

Note that parameterscgc, csyn andccs are highly depen-
dent on the underlying OS and architecture. For our evalua-
tion, we conducted experiments to identify the average val-
ues of these parameters. Our experiments yield the following
values:cgc = 1.8∗10−8 seconds,csyn = 2.7∗10−6 seconds
andccs = 2.3 ∗ 10−9 seconds.

Figure 5(a) depicts the reduction of total execution time
(compared to RR) of benchmarks when LARF and MQRR
are used. The result shows that the total execution time is
reduced by about 3% due to the decreasing GC time.

5.4.4 Average turnaround time

One important metric that has commonly been used to eval-
uate scheduling strategies is the average turnaround time of
threads. We calculated the turnaround time by summing up
the execution times, suspended times (due to preemption and
execution of other threads), the GC time, the synchroniza-
tion and the context-switching overheads during an applica-
tion’s lifetime. The same parameters are used to describe the
GC time (cgc), the monitor contention cost (csyn), and the
context-switching time (ccs) as used in the previous section.

Figure 5(b) depicts the reductions of the average turnaround
times (compared to RR) of all benchmarks when LARF and
MQRR are used. The results show that LARF can reduce
the average thread turnaround time by up to 12%. MQRR
performs slightly better than LARF, in which the average
turnaround time is reduced by 13%.

5.5 Sensitivity to Different Garbage Collection
Techniques

We evaluated the scheduling strategies under other com-
monly used garbage collection techniques: SemiSpace, Mark-
Compact, and GenCopy. In our experiment, we used RR as
the baseline strategy. For each scheduling strategy (MQRR
or LARF), we measured its GC time, the total execution
time, and the average thread turnaround time of each GC
technique.

Figure 6 and 7 illustrate the results of MQRR and LARF,
respectively. To simplify the comparison, we reported our
results based on reduction ratios as compared to the per-
formance of RR. We included the results of GenMC in
the graphs. LARF and MQRR also showed performance
improvement in GenCopy. The improvement is better than
GenMC in most benchmarks.

Interestingly, MQRR and LARF yielded very little per-
formance improvement over RR when used with SemiSpace
and MarkCompact collectors. In the worst case, LARF in-
creases the GC time by 15% inECPerf when using Mark-
Compact collector. In these two collectors, the mutation time
between two consecutive GCs is generally longer than the
mutation time in generational collectors due to smaller nurs-
ery space. We believe that longer mutation intervals neutral-
ize the benefit of our scheduling techniques.

5.6 Sensitivity to Heap Size

Table 4 shows the results of LARF and MQRR when the
heap is set to 1.5 times larger than the live-size. The results
show a similar performance reduction of GC time (ranging
from 2% to 21% and 5% to 28% for LARF and MQRR,
respectively). Notice that both LARF and MQRR perform
better because under tight heap condition, the mutator inter-



Benchmark Monitor contentions
hsqldb lusearch SPECjbb2000 SPECjAppServer2004 ECPerf

RR 3051 216 85 81004 67213
LARF 3266 208 82 80234 68498
MQRR 2991 250 79 85246 64539

# of context-switching events
hsqldb lusearch SPECjbb2000 SPECjAppServer2004 ECPerf

RR 5907 1.35 million 23.10 million 5.41 billion 3.21 billion
LARF 6895 1.29 million 23.10 million 5.41 billion 3.32 billion
MQRR 3911 1.12 million 20.34 million 4.30 billion 3.07 billion

Table 3. Number of synchronization contentions and context switching events

jbb2000 jAppServer2004lusearch ECPerfhsqldb

(a) Execution time

jbb2000 jAppServer2004lusearch ECPerfhsqldb

(b) Turn-around time

Figure 5. The reduction of total execution time (a) and turnaround time (b) in LARF and MQRR (relative to RR)

jbb2000 jAppServer2004lusearch ECPerfhsqldb

(a) GC time

jbb2000 jAppServer2004lusearch ECPerfhsqldb

(b) Execution time
jbb2000 jAppServer2004lusearch ECPerfhsqldb

(c) Turn-around time

Figure 6. The reduction percentages of GC time, total execution time,and average turnaround time in LARF (with respect to
RR) using four collectors

vals are shorter, meaning that there are more opportunities
for savings. For LARF, the reduction can range from 1% to
4%. For MQRR, the reduction is from 2%-6%. It is worth
noticing that LARF and MQRR can further reduce average
turnaround time under the tight heap size, compared to 3X
heap size.

6. Discussion
In this section, we discuss some of the runtime issues with
the proposed scheduling algorithms. We also provide rel-
evant background related to the scheduling mechanism in
Linux kernel version 2.6 as well as the plan to integrate our
algorithms to Linux.

6.1 Issues to Be Resolved

Starvation. When the proposed LARF is utilized, it is pos-
sible that starvation can occur as the scheduler prioritizes
threads with lower allocation rates. This problem can be al-
leviated by using a prioritization mechanism similar to that
used by Linux (see Section 6.3).

Live-lock. When MQRR is used, a thread in busy waiting
loop may stay on the processor forever. This situation is
referred to as live-lock and can occur because the thread is
not likely to allocate any objects while in this loop; thus, it
will never use up its memory quantum and be suspended. We
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(b) Execution time
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Figure 7. The reduction percentages of GC time, total execution time and average turnaround time in MQRR (with respect to
RR) using four collectors

LARF MQRR
GC Reduction Exec. Reduction Average Reduction GC Reduction Exec. Reduction Average Reduction
time relative to time relative to turnaround relative to time relative to time relative to turnaround relative to
(secs) RR (%) (secs) RR (%) time (secs) RR (%) (secs) RR (%) (secs) RR (%) time (secs) RR (%)

hsqldb 3.83 2.54 9.09 1.09 2 0 3.73 5.09 8.99 2.18 2 0
lusearch 4.06 14.71 18.50 3.65 10 9.09 3.86 18.91 18.30 4.69 9.30 15.45
SPECjbb2000 159 13.11 1170 2.01 102 13.56 141 22.95 1152 3.52 97 17.80
SPECjAppServer2004 504 16.14 2914 3.22 183 17.19 501 16.64 2911 3.32 174 21.27
ECPerf 322 21.46 1914 4.40 181 11.27 292 28.78 1884 5.89 173 15.20

Table 4. Performance improvement of LARF and MQRR when the heap size of 1.5 times of the maximum live-size and
GenMC is used

plan to use a time-out mechanism as a back-up preemption
policy to prevent live-lock from occurring.

Deployment in general-purpose systems. A computer system
usually has many applications running simultaneously; some
utilize garbage collection, and some do not. Because our
proposed algorithms are mainly for applications that employ
garbage collection, it is unclear how the two algorithms
will perform in systems with many applications not utilizing
garbage collection (e.g., application written in C). This issue
will be discussed in the next section as part of the plan to
integrate the proposed policies into Linux kernels.

6.2 Thread Scheduling in Linux

Linux adopts a scheduling policy that categorizes tasks
into compute-bound (not to be confused with the term
computation-bound introduced by Wilson and Moher [28,
30]) and I/O-bound. Compute-bound tasks rarely sleep and
rarely get suspended to perform I/O operations. On the other
hand, I/O-bound tasks spend a large amount of time sleep-
ing or blocking on I/O operations. To make sure that the
compute-bound tasks are not unfairly utilizing the CPU, a
dynamic task prioritization mechanism is used to lower the
priorities of compute-bound tasks, ensuring that other tasks
also get time to execute on the CPUs [1].

Beginning in the kernel version 2.6, two priority arrays
(arrays of linked lists) are used to provide constant-time
thread management overhead. Each array has 140 elements
representing priority levels; only one array is active at a
time. Tasks are scheduled based on the order of priority, and

within each priority level, tasks are scheduled in a round
robin fashion. When an executing thread has used up its
quantum, a new priority is calculated by subtracting the time
the task spent executing from the time the task spent on
sleeping or blocking. Once the new priority is determined,
the task is added to the corresponding linked list in the
inactive priority array. When there are no more tasks in the
active priority array, pointers to active and inactive priority
arrays are swapped [1].

6.3 Integration Plan

While we can only report the results based on simulation,
we have already developed a plan to implement the proposed
LARF and MQRR into Linux kernels. To incorporate LARF,
the first step is to create a system call that can be invoked
by HotSpot to record the allocation rate from the latest
execution quantum of each thread. The information will be
stored in the existing data structure that maintains thread
information (i.e.,task struct). We can implement LARF by
simply modifying the function that dynamically determines
the thread priority by using the allocation rate in additionto
the sleeping time and execution time. In doing so, we can
avoid starvation as each thread will get a chance to execute.

MQRR is more challenging to implement than LARF be-
cause it no longer relies on time-based quantum. Because
each object allocation in the heap usually does not require
operating system support (the exceptions are when the sys-
tem needs to commit more memory, the memory access in-
curs page fault, or the heap needs to be enlarged, etc.), the



operating system may not be fully aware of the amount of
allocated objects in the heap. Our current plan is to cre-
ate a software interrupt that can be invoked by the dynamic
memory allocator in the JVM to notify the operating system
that the executing thread has used up its memory-quantum.
The existing algorithm that uses sleeping time and execution
time to calculate priority will also be used by our system.
The same mechanism is still applicable because recently sus-
pended threads are likely to be in the middle of allocation
phases; therefore, should have lower priorities.

Because we plan to extend the existing scheduling mech-
anism in Linux to support the proposed policies, LARF and
MQRR can coexist with the default scheduling policy in
Linux. This coexistence will allow us to selectively apply
our algorithms to Java threads, while continuing to use the
default scheduling policy for non-Java threads. To utilize
LARF, modifications must be made to the function that de-
termines priority and not the priority arrays. Thus, once Java
threads are added to the priority array, they can be sched-
uled in a similar fashion to non-Java threads. On the other
hand, we may need to extend the priority arrays to support
MQRR so that both time-base quantum and memory-based
quantum can be used. One solution is to have two linked lists
for each priority, one for non-Java threads and the other for
Java threads.

7. Related Work
Operating systems have played an important role in improv-
ing the performance of garbage collection. For example, vir-
tual memory protection mechanisms have been used to re-
duce the overhead of write-barriers, a common procedure to
track reference assignments [2, 6, 20]. In addition, recent
research efforts by Yang et al. [33] and Grzegorczyk et al.
[8] leverage information from the operating system to maxi-
mally set the heap size while minimizing the paging efforts.

Information made available by the operating system has
also been used to explain performance issues and identify
memory errors. Work by Hauswirth et al. [9] uses informa-
tion from operating systems as well as other software and
hardware layers to understand performance. One of their ex-
amples investigates the effect of paging on GC performance.
A study by Hibino et al. [12] investigates the differences in
the performance degradation of Java Servlets among operat-
ing systems.

To the best of our knowledge, there have not been any
research efforts to create specialized schedulers to improve
garbage collection performance. However, there have been
several efforts that make scheduling decisions based on
the resource availability. Such schedulers are referred to
as resource-aware scheduling.Capriccio, a system intro-
duced by von Behren et al. [27] makes scheduling decisions
based on resource usage to avoid resource thrashing. Work
by Philbin et al. [19] also discovers that execution order can

affect cache locality. Their work introduces a scheduling
algorithm aiming at reducing cache misses.

Narlikar [18] introducesDFDeques, a space efficient and
cache conscious scheduling algorithm for parallel programs.
Multiple ready queues are globally organized to fully take
advantage of available parallelism. For example, if a ready
queue belonging to a processor is empty, the scheduler can
assign a task from another ready queue to gain more paral-
lelism. The scheduler also appliesmemory threshold, which
limits the amount of memory a processor may allocate when
consecutively executing jobs from other ready queues. If a
processor has exhausted its memory quantum, the executing
thread is suspended. The similarity between this work and
our work is that memory consumption is used as a criterion
for thread preemption.

8. Conclusion
In this paper, we introduce two new scheduling strategies,
MQRR (memory-quantum round robin) and LARF (lower
allocation rate first), designed to be allocation-phase aware.
Both schemes assign higher execution priority to threads in
computation-oriented phases, allowing more objects to die.
The results of our simulation indicate that the two schemes
perform better when generational schemes are used. How-
ever, they do not perform well when non-generational col-
lectors are used.

Compared to round robin, the reductions of the garbage
collection time of can range from 0%-16% and 0%-27%
when LARF and MQRR are used, respectively. The reduc-
tions of the overall execution time range from -0.1%-3%
for both LARF and MQRR. The reductions of the average
thread turnaround time range from -0.1%-12% for LARF
and 0.1%-13% for MQRR.
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